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Executive Summary 
The goal of task T3.3 “Integrated Querying of Streaming Data and Data at Rest” is to implement a data 
framework that can provide a unified manner for accessing data that can be considered both streaming and 
data-at-rest at the same time, while being able to correlate data coming from those different types of data 
sources. This data framework aims to overcome the existing obstacles that are observed in current 
solutions. Even if currently available solutions state that they enable the provision of real-time business 
intelligence (BI), they often provide something near real-time due to the inherit limitations of the tools they 
rely on. The important challenge that the INFINITECH unified query framework aims to solve is to provide 
actual real-time BI that is crucial in a variety of use cases that the INFINITECH platform supports, such us 
real-time risk assessment, transaction fraud detection, money laundry, etc. 

 

The INFINITECH unified query processing framework will rely on one of the popular streaming processing 
tools, extending it with SQL operators that will enable the correlation of streaming data with data at-rest, 
removing the barriers for real-time processing. This will be achieved by reading data from the platform’s 
data management layer and performing cost-demanding analytical operations in cost effective manner that 
can be used as a streaming operator, or by allowing the data ingestion of streaming data to the persistent 
storage, modifying its content while at the same time, ensuring transactional semantics. Towards this 
direction, this task will exploit the outcomes of other tasks related with the data management layer of 
INFINITECH, and more precisely, the ultra-scalable transactional management and the Hybrid Transactional 
and Analytical Processing (HTAP) provision, the declarative online data aggregations, and potentially the 
polyglot extensions of the platform. The outcome of those tasks will constitute the basic pillars that will be 
utilized by the operators implemented in the scope of this task, which will allow the unified query 
processing framework to provide real-time BI. 

 

This deliverable describes the steps required for the INFINITECH unified query processing framework design 
and implementation. At the first phase of the project, an initial analysis of the state-of-the-art in the field of 
data streaming processing had been conducted in order to decide which of the proposed solutions would 
be better suited to be used as the core of the framework. Based on this decision, an initial design of the 
operators that will extend the proposed data streaming processing was made, that will drive the actual 
implementation during the second phase of the project. This was necessary as those operators rely on the 
outcome provided by other technical tasks of WP3 and WP5, leading the implementation to be initiated at 
the second phase of the project (M12-M20). In this second version, the design of the integrated solution of 
pilot#2 took place in order to benefit from the outcomes of the work that is being currently carried out 
under the scope of the task T3.3.  In the last version of this deliverable that will be released in M27, we will 
report the final implementation of the operators that allows the combination of static and streaming data, 
taking advantage of the outcomes of the technical tasks of WP3 and WP5, along with the experimentation 
with the aforementioned pilot. 
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1 Introduction 
Finance and insurance institutions utilize static data that are persistently stored in a database management 
system, often called as data-at-rest, in order to extract information via analytical tools and AI algorithms 
that rely on historical data. Therefore, their analysis is executed as a batch process, once the tool or 
algorithm is being invoked, relying on the data that are persistently stored in the datastore at that exact 
point in time, which does not always reflects the situation at the same point in time. In addition, as 
explained in D3.1, organizations that utilize Big Data tend to use Extract, Transform, Load  (ETLs) 
periodically in order to move data from their operational datastores to a data warehouse, where they 
perform their analytics. As a result, the latter make use of a snapshot of the dataset that was taken at the 
specific point in time when the ETL process moves the data to the warehouse. This can pose an issue in 
cases where an enterprise needs to be aware of potential risks or opportunities in order to adapt and 
exploit them at the time when they happen. In finance and insurance sectors there are many cases where 
the time window to perform an action is narrow and performing analysis on yesterday’s data can hinder 
effective courses of action. Such examples in the finance sector include risk assessment analysis, where a 
financial organization might need to provide detailed risk information regarding the management of an 
asset in real-time, otherwise an investment opportunity could be lost. Another example can be noticed in 
fraud detection mechanisms, where the identification of a fraud transaction must be done exactly the 
moment when the transaction takes place, since analyzing the historical transactions of the previous day 
could prove ineffective. Moreover, in the scope of the insurance sector, taking IoT sensor data coming from 
devices, either from vehicles or from people’s smart phones could prove crucial to occur in real time since 
utilizing historical data could result in losing the opportunity to extract vital information at the time that the 
data are produced. Those scenarios are observed often in financial institutions and the insurance sector 
and pose typical challenges to many of the organizations of these sectors. They are also listed as typical 
user requirements from the pilots of the INFINITECH project, as they have been addressed in the 
corresponding deliverables of T2.1. 

 

Due to the need of real-time data analytics, streaming processing systems have been widely used during 
recent years. The emergence of IoT, where data are being continuously produced by various sources (either 
a hardware sensor that is physically installed or data generated after an online transaction) has led 
organizations having different types of streams being accessed by their systems. In order to utilize this new 
types of data, various data streaming infrastructures have been developed that allow application 
developers and data analysts to perform some query processing on top of the stream. In contrast with 
traditional database management systems where data are persistently stored and considered at-rest, 
where queries are submitted dynamically and produce results in a request-response manner, the nature of 
the streaming processing is different. Queries are statically submitted and make use of dynamic data 
(coming from the stream) often called data in-flight, and thus, they are considered continuous. As queries 
are not dynamic, there is no request-response type of interaction, rather than once a continuous query has 
been submitted, it continuously generates results. Queries might be stateless where no previous 
information might be needed. Examples can be found in scenarios where a financial organization needs to 
check if the amount of an online transaction exceeds a specific threshold. In case it does, this event might 
trigger additional actions from the organization to examine the transaction details and potential fraud 
activities. Typically, those queries only require comparison of the current data coming from the stream with 
a static value. However, as data is being processed in real-time, it allows the financial institution to react 
instantly, without having to perform this type of analysis on obsolete data coming from a snapshot taken in 
the past. Additionally, continuous queries might be stateful and require some timestamp information that 
has been collected from data being passed through the stream channel previously. Usually, a time window 
is being maintained that allows for aggregated operations to take place. An example will be to produce an 
alert if the value of a data element coming through the stream is bigger than the average value of all data 
elements that have been passed during the last minute, hour, etc. This reveals potential current trends and 
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might be useful in scenarios, for example, where a lot of investors choose to buy a specific stock or other 
investment product, or if clients decide to massively withdraw money from their accounts, or move their 
money to other products, which might be the case of a bank run due to a potential currency devaluation as 
the global economic crisis that started in 2008 showed. The streaming processing framework calculates the 
aggregated values of money transfer in the last minute or hour and might generate an alert to the financial 
institution in case massive money transfer occurs. It is obvious that if the financial institution had to rely on 
a periodic batch processes using other types of analytical tools on an obsolete dataset, the results might be 
catastrophic for the institution which could face hazardous liquidity issues.  

 

It has been highlighted how those two different types of processing, data at-rest and streaming data, can 
solve different types of problems addressed by the finance and insurance sector. Dynamically submitted 
queries at data at-rest can feed machine learning (ML)/Deal learning (DL) algorithms taking into account all 
historical data stored in a persistent medium like a data warehouse, but cannot record changes or trends 
happening in real-time. On the other hand, static continuous queries can generate events to which an 
organization can respond immediately. However, they can only rely on a narrow time window and cannot 
take into account the existence historical data. One of the current challenges arising during recent years is 
the ability for query processing that involves both worlds: data at-rest and streaming data. This can enable 
real-time business intelligence (BI) where i) streaming processing can be combined with the results of an 
analytical processing or ii) streaming data can be directly ingested in a data warehouse, and the AI 
algorithms can rely on fresh data. However, both approaches come with their limitations and can only 
provide near real-time BI due to various inherit obstacles. In order to collate streaming processing with 
aggregate/analytical queries targeting data stored in a database, it requires the latter to be executed first, 
get the result, and compare the result with the streaming data element on the fly. However, aggregate and 
analytical queries on a dataset need a scan operation, meaning that the majority of a dataset must be 
accessed first. Typically, these types of queries are costly, and therefore, cannot be used in streaming 
processing, where the latency must be very low. To overcome this inherit obstacle, traditional approaches 
often cache those results in memory and periodically update their values. This breaks however the data 
consistency, which is of major importance in the financial sector, as data is outdated. Ingesting data from a 
stream to a persistent storage and performing analytical queries in the datastore itself, comes with other 
obstacles. Traditional database systems cannot handle such an increased operational workload coming 
from a data stream, as they cannot scale out effectively. Due to this, system architectures either rely on 
NoSQL database systems, losing however transactional semantics and data consistency, or tend to add data 
coming from a stream to a data queue, and then periodically perform batch ingestion on the database. The 
latter approach leads to the use of near real-time BI, while the pilot use cases of INFINITECH aim to go a 
step beyond and do analytics on data, as they arrive.  

 

The task T3.3 “Integrated Querying of Streaming Data and Data at Rest” aims to solve the mentioned 
problems: providing a unified framework that allows application developers and data analysts to perform 
analytics taking into account data elements coming from both worlds. This means correlating streaming 
tuples with data at-rest in both ways: reading from a persistent storage and correlating the results with 
data coming from a streaming channel and using data streams to update and modify the contents of a 
persistent datastore.  

 

1.1. Objective of the Deliverable 
The objective of this deliverable is to report the work that has been done in the context of the task T3.3 at 
this phase of the project (M20). This task lasts until M27, and therefore, one more version will be released, 
extending and modifying when necessary the content of this document, following the agile approach for 
system development and aiming to update the solution and implementation with the current trends of the 



D3.7 – Data Streaming and Data at Rest Queries Integration - II 

H2020 – Project No. 856632   © INFINITECH Consortium           Page 8 of 36 

environment as the project progresses. The work that has been done during this phase (M03-M20) was 
mainly focused on the experimentation of various streaming processing frameworks that are currently 
being used in the industry, in order to decide which of those engines the INFINITECH unified query 
processing framework will rely on. Based on this preliminary work that was essential for this task, the initial 
design of the data operators that will allow the correlation of data elements from both worlds took place. 
The correlations themselves are relying on the outcomes of the various tasks that are related with the data 
management layer, as their implementations provide the basis for the implementation of the task T3.3 to 
happen.  

At the time when this version of the document was written, T3.1 (“Framework for Seamless Data 
Management and HTAP”) and T5.3 (“Declarative Real-Time Data Analytics”) have already produced their 
first prototypes and as a result, the implementation of the operators designed in the first version of the this 
report has already started. Moreover, an initial work has been conducted in order to allow the 
experimentation of the outcomes of this task with an actual use case coming from pilot#2 of the 
INFINITECH project. 
According to the designated plan, the final delivery of the implementation will take place the forthcoming 
period and will be reported in the last version of this deliverable. 

 

1.2. Insights from other Tasks and Deliverables 
As the majority of the deliverables of WP3, the work that is reported in this document is based on the 
overview description of the corresponding task T3.3, which has been further specified in more detail at 
WP2, which is the fundamental work package that defines the overall requirements of the whole platform. 
T2.1 defines the user stories of the pilots that drive the necessity of this task, while T2.3 defines the 
specification of the overall technologies that INFINITECH provides and need to interact with the unified 
query processing framework. T2.5 describes the available datasets that need to be tackled by this 
component while T2.7 puts the component under the general context of the INFINITECH Reference 
Architecture. Regarding the technical tasks of the project, T3.3 is relying on scalable transactional 
processing of the INFINITECH data management layer, as described in the corresponding deliverables of 
T3.1, along with the Hybrid Transactional and Analytical Processing (HTAP) capabilities that this task 
provides. Moreover, as explained in the corresponding deliverables of T3.2, the polyglot processing is an 
extension of the data management layer, and therefore, this task can exploit its outcomes in order to 
correlate streaming data with data stored in external data sources. In addition, T3.3 will also exploit the 
outcomes of T5.3 and its declarative live aggregation mechanisms that will allow the execution of cost-
demanding aggregation operations with O(1) complexity, and hence, making it possible to correlate 
streaming data with this type of information. Finally, T3.3 will provide valuable input to T3.4, whose scope 
is to provide automated parallelization of data streams that will rely on the operators implemented in this 
task. 

 

1.3. Structure 
This document is structured as follows: Section Error! Reference source not found. introduces the 
document and section 2 provides concrete examples on how the outcomes of T3.3 can be utilized by the 
pilots of the INFINITECH project. Then section 3 provides the state-of-the-art analysis of existing solutions 
for complex event processing and data streaming frameworks, highlighting the existing barriers of those 
solutions to provide real time business intelligence. Section 0 analyses how the technological achievements 
of INFINITECH can be used as enablers to overcome those barriers. Based on the output reported in 
sections 3 and 0, section 5 describes the design of the SQL operators that will be implemented in order to 
extend the streaming processing framework to correlate streaming data with data at-rest.  
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This second version of the deliverable additionally contains section 6 that provides an illustration of how 
the outcomes of the task T3.3 would add value with respect to a specific INFINITECH Pilot, pilot#2, and how 
the latter can benefit from technology and innovation that is being created from the work that is being 
currently carried out under this task. 

Finally, section 7 concludes the document and addresses next steps. 
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2 Relation with INFINITECH use case scenarios 
 

In the fast-moving financial domain, it is critical to maintain up-to-date analytics over financial markets. 
Such analytics are used by a wide range of both human and AI traders continuously throughout each day. 
However, in practice, these analytics are not as simple as tracking a stock or share price. Instead, more 
complex metrics are needed that compare real-time market changes with long-term historical trends, 
whilst also incorporating the current position/exposure of the individual trader. For example, a common 
metric used by financial traders around the world is Value at Risk, which measures the potential risk of the 
trader’s current investments by analysing the variance of the associated assets over different time horizons 
(that can involve years’ worth of data points). 

 

Metrics like Value at Risk raise a number of computational challenges, as they require both real time 
market data streams (data-in-flight) to remain current, but also need large quantities of historical data 
(data-at-rest) to provide meaning in context. Decades of research into stable database solutions have 
produced a range of good quality products to manage data-at-rest, including MongoDB, MySQL, 
PostgresSQL, LeanXcale, among others. Meanwhile, although less mature, a number of streaming platforms 
for processing data-in-flight have been under development over the last 10 years, such as Apache Storm or 
Apache Flink. However, the architectures of such databases and streaming platforms are very different and 
are not designed to be compatible. Hence, developing applications that require seamless integration of 
both databases and streaming platforms is very difficult and requires significant specialized expertise. 

 

Task 3.3 in general aims to make such integration easier for the applications within the financial domain, by 
producing a framework for orchestrating the aggregation of data-in-flight (streaming data) and data-at-rest 
(i.e. historical data within an SQL database).   

 

2.1  Problem Dimensions 
 

It is first worth noting that there is a large space of possible ways that an application developer might want 
to aggregate data-in-flight with data-at-rest. For example, a streaming select involves taking each item that 
arrives on an input stream and performing a SQL SELECT operation for that item, before sending both the 
item and the query return on an output stream. Meanwhile, a windowed timeseries function involves 
periodically performing a local analytics function on a small streaming data window, writing the result to a 
database, and then retrieving the window timeseries for a longer time period to calculate an aggregate 
measure. Furthermore, the appropriate solution will also be based on a range of environmental factors, 
such as whether it is possible/desirable to continuously store the incoming data streams, the available 
compute capacity that can be allocated to each individual stream, along with expected storage and 
network latencies. Hence, to better organize T3.3, we structure the problem along the following 
dimensions: 
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Table 1: Problem Dimensions 

Dimension Value Description 

Processing Type Per-Item The user is looking to augment an item that has 
arrived on a stream with associated data in a 
database 

Windowed The user is looking to perform calculations over 
a series of time windows, where a subset of 
those windows is stored in a database 

Outcome Writing True Once the calculation is finished, the outcome 
needs to be stored in a database 

False The calculation is read-only on the database 

Stream Writing True The raw contents of the data stream will be 
stored in a database 

False The stream contents are not stored 

Computation Locality Streaming Platform All significant computation is performed within 
the streaming platform (the database is used 
only for basic data lookup)  

Streaming Platform 
& Database 

Computation is shared between the streaming 
platform and database 

 

Importantly, developing a technology that is able to solve all dimension combinations is out of the scope of 
T3.3. Instead, we focus on a sub-set of dimension combinations that align with the INFINITECH pilots that 
require such a technology, which we discuss in the next section. 

 

2.2  The Case of Real-time Risk Assessment in Investment Banking 
 

The high-level aim of this case is to provide bank traders real-time information about financial assets they 
may wish to trade, ultimately enabling improved decision making and hence profit margins for their 
customers. Currently, trading information and future predictions are updated infrequently (once a day), 
meaning that traders are unable to exploit rapidly changing market conditions. This case should solve this 
issue by providing a solution that can aggregate market data, trends and provide predicted risk/yield 
estimates that update in real-time. 

Within the wider trading platform that this case supports, one component that requires data-in-flight and 
data-at-rest to function is asset risk estimation. The goal of this component is to monitor the stream of 
financial asset costs and the current exposure of the trader to those assets (i.e. how much the trader has 
invested), and then calculates a range of risk metrics. This is used to help traders track the short and long-
term risks of particular investments or their broader portfolio.    

To illustrate, we will use the example of one very common metric, Value at Risk (VaR). The aim of VaR is to 
determine the potential loss for an asset and the probability that the loss will occur. The primary input to 
VaR is the return on an asset (how profitable it is) over time. This is expressed by a very large numerical 
timeseries spanning millions of data points per year for each asset. This is combined with various 
parameters, such as the target time period to calculate VaR over, as well as the current exposure of the 
trader. The calculation of VaR (and similar metrics) is costly, particularly when calculating for long time 
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periods with high datapoint counts, or if performing a significant forward projection. Moreover, if the 
underlying return for an asset changes rapidly, then the trader will want to be notified of the increased VaR 
(i.e. estimated risk) with very little latency, such that they can take remedial steps. However, constantly re-
calculating VaR from first principles for potentially hundreds of thousands of assets is not feasible. 

On the other hand, it is possible to substantially reduce the cost of the VaR calculation through incremental 
calculation of its constituent components (the mean and standard deviation of the asset return timeseries) 
across smaller time windows. This can be achieved using a streaming platform that buffers datapoints into 
fixed time windows and triggers processing once each window is full. However, a streaming platform itself 
cannot safely store the resultant intermediate outcomes as they are designed to be stateless. Hence, the 
intermediate outcome from each window needs to be stored into a database and made accessible such 
that VaR can be rapidly calculated for a target time period. The challenge then from the database side is to 
provide sufficiently fast writes for the new windows as they are created, while also enabling very low-
latency querying of the stored window data for each asset such that VaR can be re-calculated for tens of 
thousands of assets minute-by-minute. 

 

Figure 1 illustrates the structure of this process for FX assets (currency trading) when combining data-in-
flight and data-at-rest. As we can see, a high-volume data stream of currency prices continually arrives at 
the left hand side, comprised of <asset, timestamp, value> tuples. This stream is then sub-divided into one 
stream per-asset. The streaming platform will then buffer the updates for each currency price into fixed 
time windows (in this example a 5 minute window length). Once the buffer period has elapsed, a trigger 
starts the calculation of the intermediate components needed for VaR, i.e. the mean and standard 
deviation of the updates within the window, that are then stored within a database. Depending on the 
desired variants of VaR the user wants, the required window data is loaded from the database and those 
variants of VaR are calculated and then emitted for downstream consumption by the user. 

 

 

 

Figure 1: Example of the VaR calculation process for FX data streams 

 

Considering the dimensions discussed earlier, this is a windowed process, i.e. it relies on intermediate 
calculation over time windows, and the computation is primarily performed within the Streaming Platform. 
Meanwhile, calculation outcomes are being written (means and standard deviations), but the raw stream is 
not.  

 

This is a proposed solution for a general case application coming from the insurance sector targeting risk 
assessment analysis in real-time. However, we designed it in a more generic manner in order to apply the 
same patterns to other scenarios coming from both the insurance and finance sector. INFINITECH has 15 
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pilot cases, where many of them require streaming processing technologies, as identified in the user stories 
provided by T2.1 Therefore, we will take advantage of those pilots during the evaluation phase to verify if 
the proposed framework that we present in this deliverable can be beneficial to them. 
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3 State-of-the-Art Analysis on Data Streaming 
Technologies and Complex Event Processing 

Big data analytics is a key area for businesses and the public sector alike, enabling the analysis of huge 
amounts of data to draw business insights and discover new, innovative ideas, technologies and solutions. 
By utilizing big data analytics and artificial intelligence, businesses and organizations can support their BI, 
adopting new data driven decision-making tools and shifting strategic planning processes. 

 

The data collected by the various systems day by day are rapidly increasing and that makes it difficult to 
store them in known relational and non-relational business’ databases but also, to apply data mining tools 
and techniques directly on big data streams. Thus, nowadays it seems that streaming data processing, the 
technology that started to develop more than 20 years ago, has a greater value than ever. In 1992, the 
Tapestry system has introduced the notion of streaming queries, and by then, various technologies of 
streaming processing have been developed per generation of streaming systems. 

 

3.1  Data Streaming Technologies and their Generations 
Starting with the first generation, the applications that have been developed in the early 00s used 
centralized stream processing engines such as Stream [1], Aurora [2] and TelegraphCQ [3]. These engines 
provided window-based query operators that execute continuous queries over relational data streams. 
While these engines supported principled relational query models, e.g. as proposed through the 
Continuous Query Language (CQL) [4], they lacked support for parallel data processing, making them 
inapplicable in Big Data scenarios.  

 

With the increase of stream rates and query complexity, a second generation of stream processing engines 
became distributed in order to harness the processing power of a cluster of stream processors. Systems 
such as Borealis [5], Gigascope [6], and InfoSphere Streams [7] permit inter-operator parallelism for 
continuous queries, that is, one query can be executed on multiple machines. Such systems exploit task-
parallelism, i.e. they execute different operators on different machines and allow the execution of many 
different continuous queries in parallel. InfoSphere Streams supports intra-query parallelism through a 
fine-grained subscription model, which specifies stream connections, but management is manual.  

 

As a result, the third generation of stream processing engines focus on intra-query parallelism, parallelizing 
the execution of individual query operations. StreamCloud [8], Apache S4 [9] and Storm [10] express 
queries as directed acyclic graphs with parallel operators interconnected by data streams. StreamCloud 
parallelizes stateful queries at runtime also providing intra-operator parallelism. It uses a query compiler to 
synthesize high-level queries into a graph of relational algebra operators. StreamCloud also provides 
elasticity. It uses hash-based parallelization, which is geared towards the semantics of joins and aggregates. 
S4 schedules parallel instances of operators but does not manage their parallelism. Storm allows users to 
specify a parallelization level and supports stream partitioning based on key intervals, but it cannot scale 
out the computation at runtime. This makes it hard to support unknown Big Data analytics tasks when the 
computational expensive of operators is not known beforehand. Schneider et al. [11] adds elastic operators 
to the SPADE language, which gradually finds the optimal number of threads for stateless processing with 
maximum throughput. Spark Streaming [12] parallelizes streaming queries by running them on the Spark 
distributed dataflow framework using micro-batching. With micro-batching, the streaming computation is 
executed as a series of short-running Spark jobs. Each Spark job outputs incremental results based on the 
most recent input data. A limitation of such an execution model is that it makes it challenging to support 
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arbitrary window semantics for continuous queries and in particular sliding windows. The Stratosphere 
project [13] has developed a distributed dataflow framework that can execute data-parallel batch and 
streaming processing jobs on the same platform. Computation is described as dataflow graphs, which are 
optimized using existing database techniques. The results of the Stratosphere project were made available 
through the open-source Apache Flink [14] platform now exploited by the German startup Data Artisans 
and the only competitor to Apache Spark made by the American startup DataBricks. All the above platforms 
assume that stream processing operators are stateless, which simplifies scalability and failure recovery. 
However, this means that streaming queries cannot express complex analytic tasks such as data mining and 
machine learning algorithms that incrementally refine a model.  

 

To address this problem, the fourth generation of stream processing engines adopt a stateful stream 
processing model. Platforms such as Apache Samza [15] and Naiad [16] execute streaming operators in a 
data-parallel fashion while allowing operators to have access to mutable in memory state. For example, the 
state of a continuous query can be a machine learning model that is trained with new incoming data. These 
stateful stream processing platforms therefore support the execution of analytical applications that 
maintain historic data while continuously processing new data. Some of these fourth-generation streaming 
engines rely on the concept of Stateful Dataflow Graphs (SDGs) [17]. An SDG contains vertices that are 
data-parallel stream processing operators with arbitrary amounts of mutable in-memory state, and edges 
that represent the stream. SDGs can be executed in a pipelined fashion so to have a low processing latency. 
All operators are assigned to machines in the cluster and the parallelization level for each operator is 
automatically decided by the system. 

 

Today, some of the top tools often used for real-time data streaming processing are Apache Storm, Apache 
Spark, Apache Flink, Amazon Kinesis [18], Apache Samza and IBM InfoSphere Streams. Below is an 
extended analysis of these tools. 

 

3.1.1  Apache Storm 

Built by Twitter, Apache Storm [10] specifically aims at the transformation of data streams and it is useful 
for ETL, online machine learning, continuous computation, and many other things. The foremost capability 
of Apache Storm is faster data processing that can carry out processes at the nodes with faster data 
processing than other tools do, combined with very low latency. However, Apache Storm is known to have 
a few drawbacks such as that it is only suited for data which are ingested as one entity and it cannot 
guarantee that the data will be processed only once, and thus may compromise reliability.. 

 

3.1.2  Apache Spark 

Spark [12] is an general-purpose distributed cluster computing framework. It is known for its in-memory 
processing capabilities where its engine conducts analytics, ETL, machine learning, and graph processing on 
data in motion or at rest. It is not actually a real-time system, but it processes in the micro-batches at a 
defined interval. It offers high-level APIs for different programming languages and when it has some 
latency, which eliminates some real-time analytics use cases, it makes sure that the data is processed in a 
trustworthy manner.  
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3.1.3  Apache Flink 

Flink [14] is based on the concept of streams and transformations and is like a hybrid between the Spark 
and Storm, providing frameworks for both streaming and batch processing, approaching batches as data 
streams with finite boundaries. This allows Flink to be low latent while also exhibiting the data fault 
tolerance of Spark. It can also have several user-configurable windowing and redundant settings in order to 
support user configuration. In addition, Flink also implements Apache Beam, which is the contribution of 
Google to enable real-time processing. Some other benefits that Flink offers are: 

 Stream-first approach which offers low latency and high throughput. 

 Real entry-by-entry processing. 

 Does not require manual optimization and adjustment to data it processes. 

 Dynamically analyses and optimizes tasks. 

 It is a continuous stream processing operator. 

However, Flink has some scaling limitations. 

 

3.1.4  Amazon Kinesis 

Amazon Kinesis [18] is a robust managed service that is easy to set up and maintain which allows streaming 
Big Data with Amazon Web Services (AWS). In fact, it is a cloud-based service that has the capability to do 
real-time data streaming and processing. It helps to analyse the real-time data, scaling according to the 
different requirements. One of the most crucial traits of Amazon Kinesis is flexibility that helps enterprises 
start initially with basic reports and insights on data. Subsequently, with the growth of demand, Kinesis can 
help in the deployment of machine learning algorithms to support in-depth analysis. However, the fact that 
it is a commercial cloud service, priced per hour, makes some enterprises to conclude to other free and 
open-source solutions. 

 

3.1.5  Apache Samza 

Apache Samza [15] is considered one of the best real-time stream processing frameworks. It is designed to 
match with the unique architecture of Kafka, another real-time data streaming tool, and it guarantees any 
kind of fault tolerance. Apart from just fault tolerance, it can also work against buffering and state storage. 
Samza also has great scalability and is distributed on all levels, managing things like snapshotting and 
restoration of the stream processor’s rate. Nevertheless, Samza does not offer any reliability and recovery 
accuracy.  

 

3.1.6  IBM InfoSphere Streams 

InfoSphere [7] Streams is designed to uncover meaningful patterns from information in motion (data flows) 
during a window of minutes to hours, as it is a full CEP system, as opposed to the aforementioned tools. 
The platform provides business value by supporting low-latency insight and better outcomes for time-
sensitive applications, such as fraud detection or network management. InfoSphere Streams also can fuse 
streams, enabling to derive new insights from multiple streams. The main design goals of InfoSphere 
Streams are to: 

 Respond quickly to events and changing business conditions and requirements. 

 Support continuous analysis of data at rates that are orders of magnitude greater than existing 
systems. 
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 Adapt rapidly to changing data forms and types. 

 Manage high availability, heterogeneity, and distribution for the new stream paradigm. 

 Provide security and information confidentiality for shared information. 

 

3.1.7  Brief Comparison of Analysed Data Streaming Tools 

The following table presents a brief comparison between the tools previously analysed in terms of their 
capabilities and how they work. In particular, the comparison fields are the execution model that they 
follow, the workload which is if they are CPU or memory intensive, where the latter implies that the main 
performance bottleneck at higher load conditions will be due to lack of memory. Also, fault-tolerance, 
latency and throughput are some other fields that have been used for the comparison, along with their 
application domain or areas. 

 

Table 2: Comparison of Data Streaming Tools 

Tool 
Execution 

Model 
Workload Fault tolerance Latency Throughput Application 

Apache 
Storm 

Streaming CPU / memory 

intensive 

Replication, checkpoint, data 
recovery, upstream backup, 
record-level acknowledge-
ment, stateless management 

Very low Low Internet of things, strea-
ming machine learning, 
multimedia analysis 

Apache 
Spark 

Batch, 
Iterative, 

Streaming 

CPU / memory 

intensive 

RDD based check-pointing, 
parallel recovery, replication 

Low High Event detection, strea-
ming machine learning, 
fog computing, interactive 
analysis, multimedia 
analysis, cluster analysis, 
filtering, re-processing, 
cache invalidation 

Apache 
Flink 

Streaming, 
Batch, 
Iterative, 

Interactive 

Memory 

intensive 

Stream replay 

and marker-checkpoint 

Very low High Optimization of  

e-commerce search result, 
network / sensor 
monitoring and error 
detection, ETL for business 
intelligence infrastructure, 
machine learning 

Amazon 
Kinesis 

Streaming, 
Batch 
processing 

Memory 

intensive 

Checkpoint Very low High Real-time dashboards / 
businesses / operational 
decisions, exceptions 
capturing, alerts gene-
ration, recommendations 
driving 

Apache 
Samza 

Streaming, 
Batch 
processing 

Memory 

intensive 

Checkpoint Very low High Filtering, re-processing, 
cache invalidation 
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IBM 
Infosphere 
Streams 

Streaming 

 

Capture data-
base workloads 
and replay 
them in a test 
database 
environment 

Automatic recovery Low High Space weather prediction, 
physiological data streams 
analysis, traffic manage-
ment, real-time 
predictions, event 
detection, visualization 
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4 INFINITECH Enablers for SQL Operators over 
Streaming Data  

As it has been in the previous section, modern streaming processing frameworks nowadays provide the 
ability to correlate data at-rest with data coming from a streaming channel. They offer a variety of 
operators that enables a data analyst to apply processing methods on the stream, using either CEP built-in 
functions or high level data frames. In the latter case, streams are transformed into unbound virtual tables 
that can be consumed by SQL-alike operators, or other operators. This level of virtualization of the data, 
allows for streams to be expressed as tables, and thus, being correlated with static data that are also 
expressed in tabular format. The sources of the static data can vary from static files, to database 
management systems and other sources of persistent storage. All those have to implement a specific 
connector in order for the streaming processing framework to be able to retrieve and store data to the 
target source.  

 

Although the ability for correlating static data with streaming process is not novel, there are various 
barriers that prevent those frameworks to deliver real-time BI. Those limitations are usually introduced by 
the persistent storage elements, which are either unable to handle data ingestion in very high rates, or they 
can insufficiently execute data retrieval operations, due to the high latency that a scan operation requires. 
Regarding the latter case, a typical scenario can be to compare a streaming tuple with an aggregated value: 
For instance, the value of a finance transaction might need to be checked against the overall average of 
finance transactions that have taken place during the last defined period of time. However, this operation 
requires firstly a scan of a data partition, which typically is costly. In order to overcome this, usually there 
are two approaches: The first one is to cache this value, with the drawback that the average value is not 
consistent, which is not acceptable in use cases coming from the finance sectors. The second approach is to 
create a virtual table with the target dataset and apply the aggregation in memory. This has two benefits: It 
is much more effective, as all calculations take place in memory, which is less time consuming, and, 
continuous updates and data modifications can be applied to the common shared dataset. However, 
restrictions on the overall size of the memory of the dataset and insurance of the transaction semantics are 
a significant drawback. 

 

Regarding operational workloads, modified data arriving in high rates must be stored in a persistent 
volume. Traditional database management systems usually are incapable to handle these loads, due to the 
enforcement of transactions. As the rates goes high, the transactional management subsystem of the 
database needs to scale out, in order to serve these loads. However, the distribution of transactions is hard 
to be achieved, as the traditional implementations make use of the two-phase-locking protocol, which 
cannot be distributed by design. To make things worse, operational workloads cannot be combined with 
analytical processing, as the one blocks the other. To overcome this problem, data ingestion is targeting 
operational datastores, while ETLs are used to periodically move data to a data warehouse. By doing this, it 
is possible for a streaming processing framework to ingest data to one datastore element and use the data 
warehouse for analytical operations. As data in the warehouse are added periodically by the execution of 
the ETL, the data can be considered as non-modified, can be cached in memory of the streaming engine. 
This leads to have a near real-time BI, as the processing takes into account a snapshot of the dataset that 
has been retrieved in the last invocation of the ETL. This is often not enough in modern cases coming from 
the finance sector, where real-time identification of potential opportunities or mal-detections is the 
requirement.  

 

As it can be concluded, it is hard for a data analyst to make use of a streaming processing framework in 
order to correlate static and streaming data for real-time analytics. Towards this direction, the INFINITECH 
platform provides enablers that can be used in order to overcome those obstacles. As a result, instead of 
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using virtual or materialized views over a dataset that allows the execution of table functions and SQL 
queries over correlated streaming data and data at-rest, while at the same time apply possible data 
modifications on the view, the whole architecture can be much more simplified: we can have the direct use 
of a data table of the data management layer. The latter can allow for the streaming framework to delegate 
the requirements for data consistency to the database. The data management layer offers specific enablers 
that aim to overcome the obstacles introduced by the need for persistent storage. 

 

4.1 Hybrid Transactional and Analytical Processing 
Hybrid Transactional and Analytical Processing is a first-class citizen in the overall data management layer 
of INFINITECH. As it has been reported in the corresponding deliverables of task T3.1, the purpose of this 
enabler is twofold: Firstly, it allows for the combined execution of operational and analytical workloads, 
which is crucial when there is the need for real-time business intelligence. This removes the necessity for 
moving data from the transactional datastore to a data warehouse. It is based on the removal of all data 
locks that are needed by traditional implementations to enforce data consistency on transactions that are 
being executed in parallel. The lack of data locks allows for an analytical operation to perform a scan over 
the whole dataset (which is typically the case when we need to calculate an aggregated value) without 
being blocked by data modification operations that put the locks. That way, the data analyst or application 
developer does not have to create and maintain in memory specific virtual or materialized views, which are 
used by the streaming frameworks to share this information across streaming sessions, and delegates this 
responsibility to the lower layer that has been designed to serve this. In addition, the need to maintain the 
state across sessions and share it across the different deployment nodes is removed, along with the 
restriction for the size of the view due to memory limitations of the deployment. 

 

Complementary to the above is the ability of the INFINITECH data management layer to handle very high 
rates of data ingestion. Due to its highly scalable transactional management system, it can be scaled out 
linearly to hundreds of nodes. As a result, it can serve hundreds of thousands of transactions per second, 
without being a bottleneck. This innovation of the platform allows the ingestion of data to be handled on 
the runtime, avoiding the need to push the incoming data for a temporal persistent and fault-tolerant 
queue (e.g. Apache Kafka). The approach that involves a data queue demands a consumer process that 
periodically gets data from the queue and puts them to the persistent storage in a batch. As a result, data 
are being ingested periodically in mirco-batches, and this design downgrades the real-time processing to 
near real-time. 

 

4.2 Online Aggregations 
Another obstacle that appears when correlating streaming data with data at-rest is the need to combine 
the value of a tuple coming from the streaming channel with an aggregated value of the data already 
stored. Requesting the min/max/average value of a dataset to be used in a later comparison firstly requires 
the scan of the data table in order to retrieve the aggregated value. Having the dataset in a persistent 
storage will require lots of I/O operations to that volume, which is time consuming with a significant 
latency. To overcome this problem, data are being cached into memory where this value has been pre-
calculated in advance. The drawback of this technique is in the case of datasets that are being modified 
frequently; we lose the data consistency, as the aggregated value will be outdated. Materialized views are 
usually used to deal with this requirement; however, each aggregated operation has to be calculated again 
each time the dataset is being modified. Even if this calculation takes place in memory, introducing serious 
barriers regarding the overall size of the dataset, it is computational intense. INFINITECH provides the 
ability to execute online aggregations, which means the value can be retrieved online at runtime. In 
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contrast with the need for a scan operation and the calculation of the aggregated value by calculating all 
involved records, INIFINITECH’s data management layer maintains an additional record for each involved 
value. The calculation is being performed on the fly, as a new record arrives. Instead of having to check the 
value of each record of the scan, the platform relies on delta operators that have been implemented in the 
scope of task T5.3. As a result, the value has been pre-calculated and the complexity for data retrieval is 
only O(1), which is the minimum we can get. Furthermore, being already integrated with the transactional 
management component of the platform, it is ensured that the value is consistent in terms of transactional 
semantics. This will remove the necessity for the streaming processing framework to maintain such 
expensive in terms of resource usage and time consuming views, and downgrades this to the lower layer. 
More details regarding the implementations of the online aggregators can be found in the corresponding 
deliverables of T5.3. 

 

4.3 Polyglot Capabilities 
We can consider a third obstacle, the necessity to correlate static data coming from different data sources. 
Most of the streaming processing frameworks implement a variety of join operators that can be used to get 
data from various sources and correlate the results between them and among streaming channels. 
However, a join operator usually requires to get into memory a significant amount of data that needs to be 
used for the outer operator of the operation itself. INFINITECH’s polyglot component can be used instead, 
so that the data analyst and application developer can write a simple select-from statement to get the 
corresponding result set. By doing this, she pushes down to the data management layer of INFINITECH the 
execution of this join, removing the need from the streaming processing to maintain all data in memory. As 
explained in the corresponding deliverables of T3.2, the polyglot component can receive a query written in 
a common language and execute this in the various target datastores. As a result, the retrieval of the static 
data becomes more transparent, as this is being delegated to another component, letting the streaming 
engine to only correlate the streaming data with the result. 
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5 INFINITECH streaming engine overview and design 
of operators  

After performing an intensive state-of-the-art analysis of existing solutions regarding frameworks for 
streaming processing, which can be found in Section 3, we decided to use the Apache Flink as the basis for 
the INFINITECH unified query processing framework, as the latter offers a variety of characteristics and 
functionalities that can be useful for the platform. It provides two different APIs for correlating streaming 
data with data at-rest which transforms streams and external persistent data into tabular formats that can 
be used by the various data operators. The provided Table API and SQL API can be used for static data and 
can be used in conjunction with the DataStream and DataSet interfaces. 

 

Apache Flink provides two manners for processing: a language-integrated query API and the ability to direct 
execute SQL statements. The former provides a set of available methods that can be invoked and can 
compose a pipeline of relational operations in an intuitive way and returns an equivalent result compared 
to a normal SQL execution. It supports common SQL operators such as selections, projections, filters, 
aggregations etc. The latter manner requires the compilation of the SQL statement to an execution plan 
that will be applied. The compilation makes use of Apache Calcite [21] .  

 

There is one significant difference however between those two ways for accessing static data: Using SQL 
operators, the whole dataset needs to be available to the streaming engine, where the latter applies the 
query plan in memory and returning back the results. The only exception is for SQL-compatible data 
management systems, where the whole query can be pushed down to the source via a Java DataBase 
Connection (JDBC) connection. In fact, in that cases, it is the database itself that takes care about the 
execution of the statement and returns back the result set, which will be further transformed to a tabular 
format, thus initializing a Table instance of the corresponding API. In all other cases, the dataset has to be 
fetched first from the source, and the execution plan needs to be handled by Flink in memory. An 
alternative approach is the implementation of specific connectors that can be used by the streaming engine 
using the language-integrated query API. As mentioned before, the query API provides various relational 
operations such as selections, projects etc, and the connector implements those operators for data access. 
As a result, the dataset does not have to be loaded in memory. Instead, those operations are being 
executed in the target datastore which filters out records and returns the results.  

 

INFINITECH data management layer is SQL-compatible and implements the JDBC specification. However, 
this requires the invocation of the query engine that introduces an inherit overhead due to its footprint. 
Due to this, we plan to provide an INFINITECH Flink connector, which will implement all operations 
supported by Flink for unified stream and batch processing. The benefit is twofold: firstly, it will allow for 
direct access to the storage engine of the platform, bypassing the footprint introduced by the query engine, 
and as a result, can support data ingestion in even higher rates. What is more, the direct API of the data 
storage of INFINITECH has been designed to support the distributed execution of aggregated operations. As 
a result, these types of operations can be pushed down to the storage for efficient data retrieval. The 
following sections provide information about the initial design of integration of the streaming engine of 
Flink with the INFINITECH data management layer via those operators. 
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5.1 Basic Concepts 
The Table API has as its central concept the Table which serves as the input and output of operations: an 
operator that performs a project will take as input an instance of a Table and will return the projected 
result in another instance of a Table. Tables can be either permanent or temporary. The former allows to 
be visible across several sessions that might be span across different nodes, while the latter is only visible 
during the lifecycle of a single session. 

 

In order to create a table, there are two different ways: one is to use the native API that allows you to use 
the language-integrated query, which composes the operators by using native language, or by using an SQL 
statement and pass the query string to the framework. The following code snippet shows how to construct 
a table with the native API. 

 

// create a Table 

tableEnv.connect(...).createTemporaryTable("Orders"); 

 

// scan registered Orders table 

Table orders = tableEnv.from("Orders"); 

 

// compute revenue for all customers from France 

Table revenue = orders 

  .filter($("cCountry").isEqual("FRANCE")) 

  .groupBy($("cID"), $("cName") 

  .select($("cID"), $("cName"), $("revenue").sum().as("revSum")); 

 

While this code snippet produces an equivalent result, using an SQL statement: 

 

// create a Table 

tableEnv.connect(...).createTemporaryTable("Orders"); 

 

// scan registered Orders table 

Table orders = tableEnv.from("Orders"); 

 

// compute revenue for all customers from France 

Table revenue = tableEnv.sqlQuery( 

    "SELECT cID, cName, SUM(revenue) AS revSum " + 

    "FROM Orders " + 

    "WHERE cCountry = 'FRANCE' " + 

    "GROUP BY cID, cName" 

  ); 

 

The difference between these two code snippets is the way they retrieve data from the underlying 
datastore. In the second example, there is an SQL string that will get all orders from the country whose 
name is FRANCE, and will return the overall revenue of all customers living in that country. To do so, it will 
need to use the FROM clause in order to do a selection over the ORDERS datatable, then apply a filter 
condition via the WHERE clause and the GROUP BY clause to group the summary of the values over those 
columns. Finally, it will project the two columns in the GROUP BY and will apply the aggregation operator 
over the revenue column. This query can be pushed down via the JDBC in cases Flink is integrated with an 
SQL compatible data source. Otherwise, it will grab all data from the table ORDERS first, and then it will 
apply this query over the dataset that has been fetched in memory.  

 

In the other code snippet however, the same query is expressed via the native API. We can see the involved 
operators are being constructed step-by-step. Given that, a filter will be applied on the specific column over 
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the table that have been defined, which will get data from the table ORDERS. Then, the group by method 
will be invoked whose result will be projected by the select method, which also applies the aggregation 
operation. 

 

Apart from reading data, the API provides the ability to manipulate and persist data to a persistent storage. 
The following code snippet provides an example. 

 

// create an output Table 

final Schema schema = new Schema() 

    .field("a", DataTypes.INT()) 

    .field("b", DataTypes.STRING()) 

    .field("c", DataTypes.BIGINT()); 

 

tableEnv.connect(new FileSystem().path("/path/to/file")) 

    .withFormat(new Csv().fieldDelimiter('|').deriveSchema()) 

    .withSchema(schema) 

    .createTemporaryTable("CsvSinkTable"); 

 

// do something and get the result 

Table result = ... 

 

// emit the result Table to the registered TableSink 

result.executeInsert("CsvSinkTable") 

 

This code creates a temporary table called CsvSinkTable that is mapped to a csv file in the storage and has 
the schema that has been defined at the first lines of the code. After doing a process, the data analyst 
retrieves the data and puts them into an instance of the Table, and then invokes the executeInsert method 
to actually store data into the csv file. 

 

5.2 Stream Correlation with Data At-Rest 
Apache Flink provides two APIs that allows the manipulation of streaming data, which are the DataStream 
and DataSet APIs. Table API and SQL queries can be easily integrated with and embedded into DataStream 
and DataSet programs. As a result, the data analyst can write a query to retrieve data from an external data 
table that is stored in a relational database management system and do a pre-processing: apply some 
filters, aggregate data that are grouped by a number of columns and project specific columns to the 
temporary table. The data stored in the table can be further processed with either the two of the 
DataStream or DataSet APIs. The same can happen vice versa: it is possible for a DataStream or DataSet 
program to be used as an operand in an operator that is part of the Table API.  

 

Being able to transform those two APIs gives the ability for the streaming engine to correlate data of those 
two different types: streaming data with data at-rest. As data stored in the table can be further processed 
by the streaming APIs, it allows data coming from a stream to make use of static information that can be 
retrieved by query statements over a persistent data source. Having said that, we can retrieve the average 
value of the finance transactions of a user during the past week, by executing an analytical query to the 
target database, and retrieve this result via a Table. This value can be later on used by the streaming APIs to 
check if the value of a current finance transaction is bigger than the amount of money that this costumer is 
usually performing, that might trigger an alert. 
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In the same sense, an operator of the Table interface might be able to insert data to a persistent storage. 
The ability of the Table to consume data of the streaming APIs allows for the direct ingestion of data 
streams into the storage layer. As it has been already mentioned, the insert operation usually puts data into 
a data queue, and a consumer process periodically sends micro batches to the target datastore. In 
INFINITECH, we have designed our insert operator to directly ingest data to the storage engine of the 
platform, taken advantage of its ultra-scalable transactional manager that allows to server operational 
workloads in very high rates. 

 

Moreover, in order to correlate stream and batch data, it is not enough to simple be able to transform the 
different types of APIs to another, but also providing a framework and operators that can be applicable to 
both types of data. Their main differences are that batch data are bound, while streaming is usually 
unbound, batch data pre-exist while streaming data continuously fills the query and batch data produces 
static results, while streaming data continuously change the result as the stream goes through the 
operator. In order to overcome those differences, there has been introduced the concept of virtual views. 
All input of the operators implements such a virtual view so that the execution of the operator can be 
transparent from the implementation of the view. More precisely, in order to deal with streaming data, 
there has been proposed the Materialized view or Dynamic Table. The latter caches the result of the query 
such that the query does not need to be evaluated each time the view is being accessed. However, the data 
in the view can be outdated when a data modification operator arrives into the stream. In order to 
overcome this, different techniques can be applied that updates the materialized view, by listening to 
changes by data modification operators of the stream. Dynamic tables are changing over time in contrast to 
the static tables that represent batch data. Due to this, queries targeting streaming data are often called 
Continuous Queries, which never terminate and produce those dynamic tables as the result. This means 
that those queries continuously update their result in order to reflect the changes on its dynamic input 
tables. 

 

Taking into account that the maintenance of the updates coming from the stream in the dynamic table 
must be done in memory, this concept comes with several restrictions, mainly regarding computational and 
memory usage. Continuous queries are evaluated on unbounded streams and are often supposed to run 
for weeks or months. As a result, the total amount of data that a continuous query processes can be very 
large. Similarly, other queries require re-computing and updating a large fraction of the emitted result rows 
even if only a single input record is added or updated.  

 

Dynamic tables are the core concept of Flink’s Table API and SQL support for streaming data. In contrast to 
the static tables that represent batch data, dynamic tables are changing over time. They can be queried like 
static batch tables. Querying dynamic tables yields a Continuous Query. A continuous query never 
terminates and produces a dynamic table as result. The query continuously updates its (dynamic) result 
table to reflect the changes on its (dynamic) input tables. Essentially, a continuous query on a dynamic 
table is very similar to a query that defines a materialized view. 

 

 

 

 

5.3 INFINITECH Operators for the Streaming Engine 
As it has been described in the previous subsections, the Apache Flink will be used as the basis for the 
Unified Query Processing Framework of INFINITECH that will allow the correlation of streaming data with 
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at-rest. Even if natively this framework provides the tools and APIs to mix streaming with batch processing, 
they come with certain limitations so that the overall solution cannot be used for real-time business 
intelligence. To overcome these limitations, we decided to move all materialized views to be handled by the 
data management layer. This will imply that all data modification operators coming from the stream will be 
targeting the central data repository of the platform. Data stored in its data tables can be shared across 
different Flink sessions, so there is no need for the latter to create and bind temporary tables to sessions. 
Our design relies on the technological enablers of INFINITECH, as briefly described in Section 0, while more 
analytical details can be found at the relevant deliverables of the corresponding tasks of the project. In 
order to support data ingestion in very high rates, it was considered that accessing the storage engine of 
the platform will increase the overall throughput, as the latency will become lesser, due to the fact that a 
modification operation will avoid the performance overhead introduced by the footprint of the query 
engine. For this reason, an INFINITECH connector with Flink has to be provided that implements a group of 
specific operators. The delivery of those operators is the main objective of Task 3.3, and an initial list, along 
with some implementation details can be found in this subsection. 

 

Create/Alter Table Schema 

 AddColumns: Performs a field add operation. It will throw an exception if the added fields already 
exist. 

 AddOrReplaceColumns: Performs a field add operation. Existing fields will be replaced if add 
columns name is the same as the existing column name. Moreover, if the added fields have 
duplicate field name, then the last one is used. 

 DropColumns: Performs a field drop operation. The field expressions should be field reference 
expressions, and only existing fields can be dropped. 

 RenameColumns: Performs a field rename operation. The field expressions should be alias 
expressions, and only the existing fields can be renamed. 

A code snippet on how to invoke these methods from Flink can be found as follows: 

 

Table orders = tableEnv.from("Orders"); 

//AddColumns 

result = orders.addColumns(concat($("c"), "sunny")); 

//AddOrReplaceColumns 

result = orders.addOrReplaceColumns(concat($("c"), "sunny").as("desc")); 

//DropColumns 

result = orders.dropColumns($("b"), $("c")); 

//RenameColumns 

result = orders.renameColumns($("b").as("b2"), $("c").as("c2")); 

 

This will require the connector to drop the table and to recreate with the corresponding schema, as defined 
in the Flink client. The following code snippet demonstrates how this is implemented in the connector, 
according to the type of mode to append. 

 

 

 

 

Settings settings = relationSettings.buildSessionSettings(); 

try(Session session= SessionFactory.newSession(relationSettings.getUrl(),settings)) { 

      String table = relationSettings.getTable(); 

      boolean exists = session.database().tableExists(table); 

      if(exists) { 

        switch (mode) { 
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          case ErrorIfExists:  

              throw new IllegalArgumentException(String.format("Table %s already exists", table)); 

          case Overwrite:  

      session.database().dropTable(table); 

              createTable(session,table,keyFields,data.schema()); 

              break; 

          case Ignore:  

              return; 

        } 

      } 

      else{ 

        createTable(session,table,keyFields, data.schema()); 

      } 

    } 

catch (RuntimeException e){ 

  throw e; 

} 

catch (Exception e){ 

  throw new LeanxcaleRuntimeException(e); 

} 

 

 

Scan, Projection, and Filter 

 From: Similar to the FROM clause in a SQL query. Performs a scan of a registered table. 

 Values: Similar to the VALUES clause in a SQL query. Produces an inline table out of the provided 
rows. 

 Select: Similar to a SQL SELECT statement. Performs a projection operation. 

 As: Renames fields. 

 Where / Filter: Similar to a SQL WHERE clause. Filters out rows that do not pass the filter predicate. 

A code snippet on how to invoke these methods from Flink can be found as follows: 

 

Table orders = tableEnv.from("Orders"); 

Table result = orders.select($("a"), $("c").as("d")) 

    .as("x, y, z, t") 

    .where($("b").isEqual("red")); 

 

This will require the connector to implement all corresponding filter methods that can be found in Flink. To 
handle these cases more effectively, a FilterTransator interface have been defined in the connector, which 
defined a filter method, that each of the operations implements accordingly. The FilterTransator can be 
found in the following code snippet: 

 

public interface FilterTranslator<T extends org.apache.flink.sql.sources.Filter>{ 

  Filter translate(T filter, TableModel tableModel); 

} 

An implementation of this method for the isEqual filter method of the example can be found in this code 
snippet: 

 

@Override 

public Filter translate(EqualTo filter, TableModel tableModel){ 

  String field = filter.attribute(); 

  Type type = tableModel.getFieldType(field); 

 

  switch (type){ 

    case SHORT: 
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    case INT: 

    case LONG: return Filters.eq(field,((Number)value).intValue()); 

    case FLOAT: 

    case DOUBLE: return Filters.eq(field,((Number)value).doubleValue()); 

    case TIMESTAMP: return Filters.eq(Expressions.field(field), Constants.timestamp((Date)value)); 

    case DATE: return Filters.eq(Expressions.field(field), Constants.date((java.sql.Date)value)); 

    case TIME: return Filters.eq(Expressions.field(field), Constants.time((Time)value)); 

    case STRING: return Filters.eq(field, (String)value); 

    case BOOLEAN: return Filters.eq(Expressions.field(field), Constants.bool((Boolean)value)); 

      default: throw new IllegalArgumentException(String.format("Type not %s supported", type)); 

    } 

} 

 

 

Aggregations 

 GroupBy Aggregation: Similar to a SQL GROUP BY clause. Groups the rows on the grouping keys 
with a following running aggregation operator to aggregate rows group-wise 

The following code snippet shows how to invoke this method via Flink 

 

Table orders = tableEnv.from("Orders"); 

Table result = orders.groupBy($("a")) 

                  .select($("a"), "b") 

      .sum() 

      .as("d")); 

 

 

Distinct 

 Distinct: Similar to a SQL DISTINCT clause. Returns records with distinct value combinations. 

The following code snippet shows how to invoke this method via Flink 

 

Table orders = tableEnv.from("Orders"); 

Table result = orders.distinct(); 

 

 

Joins 

Apache Flink supports various types of join operations, such as inner, outer or interval joins. This operator 
cannot be pushed down directly to the data storage of the INFINITECH platform, as its API does not support 
joins between tables. As a result, the user needs to use the JDBC driver to retrieve data from the data 
management player, and write a standard SQL statement, which will be executed by the query engine of 
the platform.  

Order By 

 Order By: Similar to a SQL ORDER BY clause. Returns records globally sorted across all parallel 
partitions. 

 Offset & Fetch: Similar to the SQL OFFSET and FETCH clauses. Offset and Fetch limit the number of 
records returned from a sorted result. Offset and Fetch are technically part of the Order By 
operator and thus must be preceded by it. 

A code snippet on how to invoke these methods from Flink can be found as follows: 
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Table in = tableEnv.fromDataSet(ds, "a, b, c"); 

in.orderBy($("a").asc()) 

    .offset(10) 

     .fetch(5); 

 

 

Insertions 

 Insert Into: Similar to the `INSERT INTO` clause in a SQL query, the method performs an insertion 
into a registered output table. The `executeInsert()` method will immediately submit a Flink job 
which execute the insert operation. 

A code snippet on how to invoke this method from Flink can be found as follows: 

 

Table orders = tableEnv.from("Orders"); 

orders.executeInsert("OutOrders"); 

 

The outOrders table contains a list of rows that will be inserted into the datastore, via the connector. The 
implementation of this operator will execute the following code in order to insert the tuples to the data 
storage: 

 

Settings settings = relationSettings.buildSessionSettings(); 

try(Session session = SessionFactory.newSession(relationSettings.getUrl(),settings)){ 

  int totalCount = 0; 

  try { 

 Table table = session.database().getTable(relationSettings.getTable()); 

 int commitCount = 0; 

 while (iterator.hasNext()) { 

   Tuple tuple = table.createTuple(); 

   Row row = iterator.next(); 

   for (int i = 0; i < fieldsByPos.length; i++) { 

  tuple.put(fieldsByPos[i], row.apply(i)); 

   } 

   table.insert(tuple); 

   totalCount++; 

   if(++commitCount>=commitRows){ 

  session.commit(); 

  commitCount = 0; 

   } 

 } 

 if(commitCount>0) { 

   session.commit(); 

 } 

  } 

  catch (Exception e){ 

 log.warn("Exception writing row {}, rollbacking transaction",totalCount); 

 

 try{ 

   session.rollback(); 

 } 

 catch (Exception e1){ 

   log.error("Exception doing rollback {}",e1.getMessage(), e1); 

    } 

    throw  e; 

  } 

} 

catch (RuntimeException e){ 
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  throw e; 

} 

catch (Exception e){ 

  throw  new LeanxcaleRuntimeException(e); 

} 
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6 Combined Data Streaming and Data at Rest 
Illustration 

Having discussed how the INFINITECH solution handles efficient combination of data in-flight and data at 
rest in the previous section, it is valuable to provide an illustration of how this would add value with respect 
to a specific INFINITECH Pilot. Hence, in this section we provide a walk-through of an updated Flink 
topology for the real-time risk assessment in investment banking (Pilot#2) use-case (also discussed 
previously in Section 2.2). Recall that the aim of this use-case is to produce as close to real-time risk 
assessments for customer investment portfolios as possible, e.g. such that customers can be alerted if 
significantly elevated risks start to be observed. Risk is quantified with the metric Value-at-Risk (VaR), which 
is calculated by analysing the asset returns over many time periods and calculating an average % loss across 
the worst 5% performing time periods (as a worst-case scenario).     

 

To understand the issues with calculating real-time VaR, we first provide an illustration of a naive solution 
in Figure 2. In this setup, we take as input on the left-hand side a stream of asset pricing data (e.g. from a 
stock market or trading platform). To calculate VaR for an asset at the current moment, we need to retrieve 
the historical pricing data for that asset, which will involve an expensive table scan over whatever back-end 
database is being used to persistently store asset prices. Once this is done, the resultant array of asset 
prices will need to be transferred over the network from the database with the asset pricing data to the 
current Flink Worker responsible for processing the new asset price event (that again may be expensive). 
The historical prices will then be merged into the stream with the new price event and sent on to an 
aggregator to calculate asset returns for each time window being considered. If we are unlucky here, this 
may involve another expensive network transfer, depending on if the transformer and window aggregator 
are co-located on the same machine.  Once the asset returns for each window are calculated, the results 
are sent onward to VaR calculation, which produces a single score for the asset based on the updated data. 
It is worth noting at this stage that all of this work will have been for naught if the initiating asset price 
point does not contribute to a window in the worst 5% (as the VaR calculation only cares about that 5%). 
Finally, assuming that the VaR value for the asset has changed, then the new value will be sent to another 
transformer, to calculate aggregate VaR for each customer’s portfolio that holds the asset.   

 

 

Figure 2: Naive VaR Flink Topology 

 

To summarize, there are four principles that should be followed when designing a good solution to this 
problem, which the above design fails under: 

1. We want to minimise the amount of processing that occurs when each asset price update arrives, 
since this happens very frequently. 
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2. We should only trigger the re-calculation of VaR if we have good reason to believe that this will 
result in the VaR score for an asset to change. Practically, this means we should only trigger 
calculation at the end of a time window, and only if the current window is part of the worst 5%. 

3. We should avoid expensive table scans over large tables. 
4. We should avoid transferring large amounts of data over the network. 

 

Given these principles, let us now consider a superior topology that utilises the INFINITECH streaming 
engine to solve these issues. Figure 3 illustrates an alternative Flink topology solution that integrates 
dynamic tables and continuous queries over the INFINITECH data layer (the INFINISTORE). As with the 
previous topology, we ingest a stream of asset pricing updates over time as a stream. However, instead of 
using this as a trigger to start the process of recalculating VaR, we instead assign time window labels that 
we can use to structure processing up-front. With these labels in place, we can then leverage the new 
remote dynamic table functionality provided by the INFINISTORE to ‘push-down’ both the storage of the 
asset pricing data and the incremental calculation of asset returns at the end of each time window into the 
store itself. In this way, we never need to transfer a large batch of asset pricing data across the network. 
Moreover, the INFINISTORE in conjunction with Flink’s continuous query semantics means that processing 
is incremental and localized to only the window of current interest, avoiding large table scans and 
redundant computation. Finally, dynamic tables can also be easily pipelined back into stream processing 
within Flink, where the ‘events’ emitted are the updates made to the table. In this case, an update to the 
Dynamic Returns Per Time Window Table indicates that the return for an asset has been calculated for a 
new time window, which acts as a more useful trigger for re-calculation of VaR for that asset. Overall, this is 
a much more efficient and scalable topology that can handle high volume streams of asset prices, as well as 
parallelism in computation across assets. 

 

 

Figure 3: VaR Calculation Topology using the Infinitech Streaming Engine 
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7 Conclusions and next steps  
This report documented the wok that has been carried out in the scope of task T3.3 “Integrated Querying 
of Streaming Data and Data at Rest” at this phase of the project. The main objective of this task is to 
implement a data framework that can provide a unified manner for accessing data that can be considered 
both streaming and data-at-rest at the same time, thus allowing the correlation of stream and batch 
processing in an effective way. This is very important as it will remove the current obstacles and limitations 
of existing solutions that promise to deliver this functionality, however they fail due to the inherit barriers 
for accessing static data effectively so that they can be used in real-time for streaming processing. As we 
explained, the high rate of data ingestion that comes from a stream cannot be served by traditional data 
management systems, and as a result, most of the system integrators are using data queues as an interim 
layer for pushing data from a stream, while a consumer process periodically takes data from the queue and 
ingest them to the datastore in what is called micro batches. This has the drawback that data analysts 
cannot apply their AI algorithms in real-data and in fact, they can only provide near real-time business 
intelligence. Another drawback is the need to combine streaming data with information that has been 
retrieved from aggregation operations over the static data, which are time consuming. Modern solutions 
usually cache this information so that it can be instantly available to the stream processing engine, with the 
drawback of losing data consistency, when the dataset is being frequently modified at the same time. 

 

This report firstly provided an analysis over the state-of-the-art of streaming processing frameworks, and 
analyzed the current status of this ecosystem. We decided to use Apache Flink as the core of the 
INFINITECH unified query processing framework, as it is a popular solution with lots of documentation that 
also provides some very important functionalities: it has been initially designed without the support of 
stateful operations and fault-tolerance, so that it can be easily scaled out. At its current version, it provides 
the support of additional operators that are stateful, and defines several levels of APIs for context event 
processing on the very low level, for streaming processing using DataStreams and the ability to write SQL 
statements for query processing on its higher level Table API. Tables can be transformed to data streams 
and vice versa, thus allowing for the correlation of streaming and data processing. However, the 
implementation of the stateful operations requires that objects resign in memory and being updated by the 
Apache Flink framework, with all the aforementioned barriers. 

 

As the scope of this task is to provide the integrated query processing framework of the INFINITECH 
platform, it became obvious that our framework will have to rely on the unique characteristics of the data 
management layer of the platform itself: the support of hybrid transactional and analytical processing, the 
online aggregations and the polyglot capabilities. The highly scalable transactional management of the data 
repository allows for data ingestion in very high rates, which is what a streaming channel requires. We can 
remove now the interim data queue and insert data directly to the storage. But this is not the only benefit 
from using our own data storage layer. HTAP allows for performing analytical query processing on live data, 
as they are being modifying by operational workloads, and as a result, gives the ability for executing AI 
algorithms on real data. Real time BI can be now achieved by delegating the need for maintaining Flink’s 
materialized views down to the data table of the datastore. This ensures data consistency, as the 
transactional semantics are provided by the database itself, rather than relying on the streaming 
framework which simply maintains the sequence of the modified operations, but does not guarantees the 
serializability of the order of execution (in terms of a database transaction). Moreover, it allows for the 
streaming engine to effectively scale out, which cannot be done when sharing content such as materialized 
views between different Flink sessions. Additionally, the online aggregations of INFINITECH allow to execute 
aggregation statements (i.e. average, summary, count, etc.) with a complexity of O(1) instead of O(n), as 
supposed by the need for scanning the entire dataset. Therefore, the streaming operators can directly 
query the datastore for such information, instead of caching those values and lose the consistency of the 
data. 
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In order to integrate the components of INFINITECH that provide those characteristics with Apache Flink, 
we designed an INFINITECH Flink connector that implements those operations that can be used by the 
framework. We mainly achieve to remove the state of the stateful Flink operations down to the data 
management layer, so that those operations can be now considered stateless and can easily scale out. Flink 
now does not have to maintain any state and can be scale out independently, while the data management 
layer has been also designed to scale horizontally, as explained in the deliverables of task T3.1. Therefore, 
we claim that we have no data bottleneck in our solution. Section 5 provides specific information and hints 
regarding the implementation of those operators, even if there are in the design phase at this phase of the 
project. Finally, as the definition of the pilot needs and requirements for their integrated solutions have 
been matured during this phase of the project, we took the generic use case described in the first version 
of this document, and made it more concrete, trying to address the needs for a specific pilot, pilot#2, of the 
INFINITECH project. We illustrated how our solution can remove 4 important technological obstacles that 
this pilot would have normally faced. 

 

To conclude, the progress of the task T3.3 is in plan with the timeline and at this phase of the project, we 
have designed the INFINITECH unified query processing framework. The latter will benefit by the other 
components of the platform that can be considered as the main technological pillars and therefore, the 
implementation of the operators had been initially planned to be delivered at a later phase, when those 
components will be available. As we had already been experimenting with the use of Apache Flink over a 
generic use case scenario, during this second phase, we took advantage of the needs of pilot#2 in order to 
design an integrated solution that could benefit from the outcomes of the work that is being currently 
carried out under the scope of task T3.3. As the implementation of the Flink operators are currently in 
progress, at the final version of this deliverable will include the validation of our implementation that be 
based on this integrated solution of pilot#2. 
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