
© INFINITECH Consortium

Tailored IoT & BigData Sandboxes and Testbeds for Smart,
Autonomous and Personalized Services in the European

Finance and Insurance Services Ecosystem

D3.7 – Data Streaming and Data at Rest

Queries Integration – II

Revision Number 3.0

Task Reference T3.3

Lead Beneficiary LXS

Responsible Ricardo Jiménez-Peris

Partners LXS, GLA, UBI, UPRC

Deliverable Type Report (R)

Dissemination Level Public (PU)

Due Date 2021-05-31

Delivered Date 2021-10-04

Internal Reviewers JSI, NUIG

Quality Assurance INNOV

Acceptance WP Leader Accepted and Coordinator Accepted

EC Project Officer Pierre-Paul Sondag

Programme HORIZON 2020 - ICT-11-2018

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no 856632

Ref. Ares(2021)6018471 - 04/10/2021

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 2 of 36

Contributing Partners
Partner Acronym Role1 Author(s)2

LXS Lead Beneficiary Ricardo Jiménez-Peris

LXS Contributor Boyan Kolev,

Patricio Martinez,

Pavlos Kranas,

Alejandro Ramiro

GLA Contributor Richard McCreadie,

Craig Macdonald,

Iadh Ounis

UBI Contributor Konstantinos Perakis,

Dimitris Miltiadou

UPRC Contributor Christos Doulkeridis,

Ioannis Kranas

JSI Internal Reviewer Maja Skrjanc

NUIG Internal Reviewer Martin Serrano

INNOV Quality Assurance Dimitris Drakoulis

Revision History
Version Date Partner(s) Description

0.1 2021-09-01 LXS ToC Version

0.2 2021-09-01 LXS Input on executive summary and introduction

0.3 2021-09-10 GLA, UBI, UPRC Input on section 6

0.4 2021-09-13 LXS Finalized the document

1.0 2021-09-14 LXS Submitted for internal review

1.1 2021-09-20 NUIG Internal review

1.2 2021-09-20 JSI Internal review

2.0 2021-09-30 LXS, INNOVA QA check

3.0 2021-10-04 LXS Finalize the document

1
 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

2
 Can be left void

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 3 of 36

Executive Summary
The goal of task T3.3 “Integrated Querying of Streaming Data and Data at Rest” is to implement a data
framework that can provide a unified manner for accessing data that can be considered both streaming and
data-at-rest at the same time, while being able to correlate data coming from those different types of data
sources. This data framework aims to overcome the existing obstacles that are observed in current
solutions. Even if currently available solutions state that they enable the provision of real-time business
intelligence (BI), they often provide something near real-time due to the inherit limitations of the tools they
rely on. The important challenge that the INFINITECH unified query framework aims to solve is to provide
actual real-time BI that is crucial in a variety of use cases that the INFINITECH platform supports, such us
real-time risk assessment, transaction fraud detection, money laundry, etc.

The INFINITECH unified query processing framework will rely on one of the popular streaming processing
tools, extending it with SQL operators that will enable the correlation of streaming data with data at-rest,
removing the barriers for real-time processing. This will be achieved by reading data from the platform’s
data management layer and performing cost-demanding analytical operations in cost effective manner that
can be used as a streaming operator, or by allowing the data ingestion of streaming data to the persistent
storage, modifying its content while at the same time, ensuring transactional semantics. Towards this
direction, this task will exploit the outcomes of other tasks related with the data management layer of
INFINITECH, and more precisely, the ultra-scalable transactional management and the Hybrid Transactional
and Analytical Processing (HTAP) provision, the declarative online data aggregations, and potentially the
polyglot extensions of the platform. The outcome of those tasks will constitute the basic pillars that will be
utilized by the operators implemented in the scope of this task, which will allow the unified query
processing framework to provide real-time BI.

This deliverable describes the steps required for the INFINITECH unified query processing framework design
and implementation. At the first phase of the project, an initial analysis of the state-of-the-art in the field of
data streaming processing had been conducted in order to decide which of the proposed solutions would
be better suited to be used as the core of the framework. Based on this decision, an initial design of the
operators that will extend the proposed data streaming processing was made, that will drive the actual
implementation during the second phase of the project. This was necessary as those operators rely on the
outcome provided by other technical tasks of WP3 and WP5, leading the implementation to be initiated at
the second phase of the project (M12-M20). In this second version, the design of the integrated solution of
pilot#2 took place in order to benefit from the outcomes of the work that is being currently carried out
under the scope of the task T3.3. In the last version of this deliverable that will be released in M27, we will
report the final implementation of the operators that allows the combination of static and streaming data,
taking advantage of the outcomes of the technical tasks of WP3 and WP5, along with the experimentation
with the aforementioned pilot.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 4 of 36

Table of Contents
1 Introduction ... 6

1.1. Objective of the Deliverable .. 7

1.2. Insights from other Tasks and Deliverables... 8

1.3. Structure .. 8

2 Relation with INFINITECH use case scenarios ... 10

2.1 Problem Dimensions .. 10

2.2 The Case of Real-time Risk Assessment in Investment Banking ... 11

3 State-of-the-Art Analysis on Data Streaming Technologies and Complex Event Processing 14

3.1 Data Streaming Technologies and their Generations ... 14

3.1.1 Apache Storm .. 15

3.1.2 Apache Spark ... 15

3.1.3 Apache Flink ... 16

3.1.4 Amazon Kinesis .. 16

3.1.5 Apache Samza .. 16

3.1.6 IBM InfoSphere Streams .. 16

3.1.7 Brief Comparison of Analysed Data Streaming Tools .. 17

4 INFINITECH Enablers for SQL Operators over Streaming Data .. 19

4.1 Hybrid Transactional and Analytical Processing .. 20

4.2 Online Aggregations .. 20

4.3 Polyglot Capabilities .. 21

5 INFINITECH streaming engine overview and design of operators .. 22

5.1 Basic Concepts ... 23

5.2 Stream Correlation with Data At-Rest ... 24

5.3 INFINITECH Operators for the Streaming Engine .. 25

6 Combined Data Streaming and Data at Rest Illustration .. 31

7 Conclusions and next steps ... 33

8 References ... 35

List of Figures
Figure 1: Example of the VaR calculation process for FX data streams .. 12
Figure 2: Naive VaR Flink Topology ... 31
Figure 3: VaR Calculation Topology using the Infinitech Streaming Engine .. 32

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 5 of 36

Abbreviations/Acronyms
API Application Programming Interface

AWS Amazon Web Services

BI Business Intelligence

CEP Complex Event Processing

CPU Central Processing Unit

DL Deal Learning

ETL Extract, Transform, Load

HTAP Hybrid Transactional and Analytical Processing

I/O Input/Output

IoT Internet of Things

JDBC Java DataBase Connection

ML Machine Learning

NoSQL No/Not only SQL

SDG Stateful DataFlow Graph

SQL Structured Query Language

VaR Value at Risk

WP Work Package

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 6 of 36

1 Introduction
Finance and insurance institutions utilize static data that are persistently stored in a database management
system, often called as data-at-rest, in order to extract information via analytical tools and AI algorithms
that rely on historical data. Therefore, their analysis is executed as a batch process, once the tool or
algorithm is being invoked, relying on the data that are persistently stored in the datastore at that exact
point in time, which does not always reflects the situation at the same point in time. In addition, as
explained in D3.1, organizations that utilize Big Data tend to use Extract, Transform, Load (ETLs)
periodically in order to move data from their operational datastores to a data warehouse, where they
perform their analytics. As a result, the latter make use of a snapshot of the dataset that was taken at the
specific point in time when the ETL process moves the data to the warehouse. This can pose an issue in
cases where an enterprise needs to be aware of potential risks or opportunities in order to adapt and
exploit them at the time when they happen. In finance and insurance sectors there are many cases where
the time window to perform an action is narrow and performing analysis on yesterday’s data can hinder
effective courses of action. Such examples in the finance sector include risk assessment analysis, where a
financial organization might need to provide detailed risk information regarding the management of an
asset in real-time, otherwise an investment opportunity could be lost. Another example can be noticed in
fraud detection mechanisms, where the identification of a fraud transaction must be done exactly the
moment when the transaction takes place, since analyzing the historical transactions of the previous day
could prove ineffective. Moreover, in the scope of the insurance sector, taking IoT sensor data coming from
devices, either from vehicles or from people’s smart phones could prove crucial to occur in real time since
utilizing historical data could result in losing the opportunity to extract vital information at the time that the
data are produced. Those scenarios are observed often in financial institutions and the insurance sector
and pose typical challenges to many of the organizations of these sectors. They are also listed as typical
user requirements from the pilots of the INFINITECH project, as they have been addressed in the
corresponding deliverables of T2.1.

Due to the need of real-time data analytics, streaming processing systems have been widely used during
recent years. The emergence of IoT, where data are being continuously produced by various sources (either
a hardware sensor that is physically installed or data generated after an online transaction) has led
organizations having different types of streams being accessed by their systems. In order to utilize this new
types of data, various data streaming infrastructures have been developed that allow application
developers and data analysts to perform some query processing on top of the stream. In contrast with
traditional database management systems where data are persistently stored and considered at-rest,
where queries are submitted dynamically and produce results in a request-response manner, the nature of
the streaming processing is different. Queries are statically submitted and make use of dynamic data
(coming from the stream) often called data in-flight, and thus, they are considered continuous. As queries
are not dynamic, there is no request-response type of interaction, rather than once a continuous query has
been submitted, it continuously generates results. Queries might be stateless where no previous
information might be needed. Examples can be found in scenarios where a financial organization needs to
check if the amount of an online transaction exceeds a specific threshold. In case it does, this event might
trigger additional actions from the organization to examine the transaction details and potential fraud
activities. Typically, those queries only require comparison of the current data coming from the stream with
a static value. However, as data is being processed in real-time, it allows the financial institution to react
instantly, without having to perform this type of analysis on obsolete data coming from a snapshot taken in
the past. Additionally, continuous queries might be stateful and require some timestamp information that
has been collected from data being passed through the stream channel previously. Usually, a time window
is being maintained that allows for aggregated operations to take place. An example will be to produce an
alert if the value of a data element coming through the stream is bigger than the average value of all data
elements that have been passed during the last minute, hour, etc. This reveals potential current trends and

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 7 of 36

might be useful in scenarios, for example, where a lot of investors choose to buy a specific stock or other
investment product, or if clients decide to massively withdraw money from their accounts, or move their
money to other products, which might be the case of a bank run due to a potential currency devaluation as
the global economic crisis that started in 2008 showed. The streaming processing framework calculates the
aggregated values of money transfer in the last minute or hour and might generate an alert to the financial
institution in case massive money transfer occurs. It is obvious that if the financial institution had to rely on
a periodic batch processes using other types of analytical tools on an obsolete dataset, the results might be
catastrophic for the institution which could face hazardous liquidity issues.

It has been highlighted how those two different types of processing, data at-rest and streaming data, can
solve different types of problems addressed by the finance and insurance sector. Dynamically submitted
queries at data at-rest can feed machine learning (ML)/Deal learning (DL) algorithms taking into account all
historical data stored in a persistent medium like a data warehouse, but cannot record changes or trends
happening in real-time. On the other hand, static continuous queries can generate events to which an
organization can respond immediately. However, they can only rely on a narrow time window and cannot
take into account the existence historical data. One of the current challenges arising during recent years is
the ability for query processing that involves both worlds: data at-rest and streaming data. This can enable
real-time business intelligence (BI) where i) streaming processing can be combined with the results of an
analytical processing or ii) streaming data can be directly ingested in a data warehouse, and the AI
algorithms can rely on fresh data. However, both approaches come with their limitations and can only
provide near real-time BI due to various inherit obstacles. In order to collate streaming processing with
aggregate/analytical queries targeting data stored in a database, it requires the latter to be executed first,
get the result, and compare the result with the streaming data element on the fly. However, aggregate and
analytical queries on a dataset need a scan operation, meaning that the majority of a dataset must be
accessed first. Typically, these types of queries are costly, and therefore, cannot be used in streaming
processing, where the latency must be very low. To overcome this inherit obstacle, traditional approaches
often cache those results in memory and periodically update their values. This breaks however the data
consistency, which is of major importance in the financial sector, as data is outdated. Ingesting data from a
stream to a persistent storage and performing analytical queries in the datastore itself, comes with other
obstacles. Traditional database systems cannot handle such an increased operational workload coming
from a data stream, as they cannot scale out effectively. Due to this, system architectures either rely on
NoSQL database systems, losing however transactional semantics and data consistency, or tend to add data
coming from a stream to a data queue, and then periodically perform batch ingestion on the database. The
latter approach leads to the use of near real-time BI, while the pilot use cases of INFINITECH aim to go a
step beyond and do analytics on data, as they arrive.

The task T3.3 “Integrated Querying of Streaming Data and Data at Rest” aims to solve the mentioned
problems: providing a unified framework that allows application developers and data analysts to perform
analytics taking into account data elements coming from both worlds. This means correlating streaming
tuples with data at-rest in both ways: reading from a persistent storage and correlating the results with
data coming from a streaming channel and using data streams to update and modify the contents of a
persistent datastore.

1.1. Objective of the Deliverable
The objective of this deliverable is to report the work that has been done in the context of the task T3.3 at
this phase of the project (M20). This task lasts until M27, and therefore, one more version will be released,
extending and modifying when necessary the content of this document, following the agile approach for
system development and aiming to update the solution and implementation with the current trends of the

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 8 of 36

environment as the project progresses. The work that has been done during this phase (M03-M20) was
mainly focused on the experimentation of various streaming processing frameworks that are currently
being used in the industry, in order to decide which of those engines the INFINITECH unified query
processing framework will rely on. Based on this preliminary work that was essential for this task, the initial
design of the data operators that will allow the correlation of data elements from both worlds took place.
The correlations themselves are relying on the outcomes of the various tasks that are related with the data
management layer, as their implementations provide the basis for the implementation of the task T3.3 to
happen.

At the time when this version of the document was written, T3.1 (“Framework for Seamless Data
Management and HTAP”) and T5.3 (“Declarative Real-Time Data Analytics”) have already produced their
first prototypes and as a result, the implementation of the operators designed in the first version of the this
report has already started. Moreover, an initial work has been conducted in order to allow the
experimentation of the outcomes of this task with an actual use case coming from pilot#2 of the
INFINITECH project.
According to the designated plan, the final delivery of the implementation will take place the forthcoming
period and will be reported in the last version of this deliverable.

1.2. Insights from other Tasks and Deliverables
As the majority of the deliverables of WP3, the work that is reported in this document is based on the
overview description of the corresponding task T3.3, which has been further specified in more detail at
WP2, which is the fundamental work package that defines the overall requirements of the whole platform.
T2.1 defines the user stories of the pilots that drive the necessity of this task, while T2.3 defines the
specification of the overall technologies that INFINITECH provides and need to interact with the unified
query processing framework. T2.5 describes the available datasets that need to be tackled by this
component while T2.7 puts the component under the general context of the INFINITECH Reference
Architecture. Regarding the technical tasks of the project, T3.3 is relying on scalable transactional
processing of the INFINITECH data management layer, as described in the corresponding deliverables of
T3.1, along with the Hybrid Transactional and Analytical Processing (HTAP) capabilities that this task
provides. Moreover, as explained in the corresponding deliverables of T3.2, the polyglot processing is an
extension of the data management layer, and therefore, this task can exploit its outcomes in order to
correlate streaming data with data stored in external data sources. In addition, T3.3 will also exploit the
outcomes of T5.3 and its declarative live aggregation mechanisms that will allow the execution of cost-
demanding aggregation operations with O(1) complexity, and hence, making it possible to correlate
streaming data with this type of information. Finally, T3.3 will provide valuable input to T3.4, whose scope
is to provide automated parallelization of data streams that will rely on the operators implemented in this
task.

1.3. Structure
This document is structured as follows: Section Error! Reference source not found. introduces the
document and section 2 provides concrete examples on how the outcomes of T3.3 can be utilized by the
pilots of the INFINITECH project. Then section 3 provides the state-of-the-art analysis of existing solutions
for complex event processing and data streaming frameworks, highlighting the existing barriers of those
solutions to provide real time business intelligence. Section 0 analyses how the technological achievements
of INFINITECH can be used as enablers to overcome those barriers. Based on the output reported in
sections 3 and 0, section 5 describes the design of the SQL operators that will be implemented in order to
extend the streaming processing framework to correlate streaming data with data at-rest.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 9 of 36

This second version of the deliverable additionally contains section 6 that provides an illustration of how
the outcomes of the task T3.3 would add value with respect to a specific INFINITECH Pilot, pilot#2, and how
the latter can benefit from technology and innovation that is being created from the work that is being
currently carried out under this task.

Finally, section 7 concludes the document and addresses next steps.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 10 of 36

2 Relation with INFINITECH use case scenarios

In the fast-moving financial domain, it is critical to maintain up-to-date analytics over financial markets.
Such analytics are used by a wide range of both human and AI traders continuously throughout each day.
However, in practice, these analytics are not as simple as tracking a stock or share price. Instead, more
complex metrics are needed that compare real-time market changes with long-term historical trends,
whilst also incorporating the current position/exposure of the individual trader. For example, a common
metric used by financial traders around the world is Value at Risk, which measures the potential risk of the
trader’s current investments by analysing the variance of the associated assets over different time horizons
(that can involve years’ worth of data points).

Metrics like Value at Risk raise a number of computational challenges, as they require both real time
market data streams (data-in-flight) to remain current, but also need large quantities of historical data
(data-at-rest) to provide meaning in context. Decades of research into stable database solutions have
produced a range of good quality products to manage data-at-rest, including MongoDB, MySQL,
PostgresSQL, LeanXcale, among others. Meanwhile, although less mature, a number of streaming platforms
for processing data-in-flight have been under development over the last 10 years, such as Apache Storm or
Apache Flink. However, the architectures of such databases and streaming platforms are very different and
are not designed to be compatible. Hence, developing applications that require seamless integration of
both databases and streaming platforms is very difficult and requires significant specialized expertise.

Task 3.3 in general aims to make such integration easier for the applications within the financial domain, by
producing a framework for orchestrating the aggregation of data-in-flight (streaming data) and data-at-rest
(i.e. historical data within an SQL database).

2.1 Problem Dimensions

It is first worth noting that there is a large space of possible ways that an application developer might want
to aggregate data-in-flight with data-at-rest. For example, a streaming select involves taking each item that
arrives on an input stream and performing a SQL SELECT operation for that item, before sending both the
item and the query return on an output stream. Meanwhile, a windowed timeseries function involves
periodically performing a local analytics function on a small streaming data window, writing the result to a
database, and then retrieving the window timeseries for a longer time period to calculate an aggregate
measure. Furthermore, the appropriate solution will also be based on a range of environmental factors,
such as whether it is possible/desirable to continuously store the incoming data streams, the available
compute capacity that can be allocated to each individual stream, along with expected storage and
network latencies. Hence, to better organize T3.3, we structure the problem along the following
dimensions:

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 11 of 36

Table 1: Problem Dimensions

Dimension Value Description

Processing Type Per-Item The user is looking to augment an item that has
arrived on a stream with associated data in a
database

Windowed The user is looking to perform calculations over
a series of time windows, where a subset of
those windows is stored in a database

Outcome Writing True Once the calculation is finished, the outcome
needs to be stored in a database

False The calculation is read-only on the database

Stream Writing True The raw contents of the data stream will be
stored in a database

False The stream contents are not stored

Computation Locality Streaming Platform All significant computation is performed within
the streaming platform (the database is used
only for basic data lookup)

Streaming Platform
& Database

Computation is shared between the streaming
platform and database

Importantly, developing a technology that is able to solve all dimension combinations is out of the scope of
T3.3. Instead, we focus on a sub-set of dimension combinations that align with the INFINITECH pilots that
require such a technology, which we discuss in the next section.

2.2 The Case of Real-time Risk Assessment in Investment Banking

The high-level aim of this case is to provide bank traders real-time information about financial assets they
may wish to trade, ultimately enabling improved decision making and hence profit margins for their
customers. Currently, trading information and future predictions are updated infrequently (once a day),
meaning that traders are unable to exploit rapidly changing market conditions. This case should solve this
issue by providing a solution that can aggregate market data, trends and provide predicted risk/yield
estimates that update in real-time.

Within the wider trading platform that this case supports, one component that requires data-in-flight and
data-at-rest to function is asset risk estimation. The goal of this component is to monitor the stream of
financial asset costs and the current exposure of the trader to those assets (i.e. how much the trader has
invested), and then calculates a range of risk metrics. This is used to help traders track the short and long-
term risks of particular investments or their broader portfolio.

To illustrate, we will use the example of one very common metric, Value at Risk (VaR). The aim of VaR is to
determine the potential loss for an asset and the probability that the loss will occur. The primary input to
VaR is the return on an asset (how profitable it is) over time. This is expressed by a very large numerical
timeseries spanning millions of data points per year for each asset. This is combined with various
parameters, such as the target time period to calculate VaR over, as well as the current exposure of the
trader. The calculation of VaR (and similar metrics) is costly, particularly when calculating for long time

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 12 of 36

periods with high datapoint counts, or if performing a significant forward projection. Moreover, if the
underlying return for an asset changes rapidly, then the trader will want to be notified of the increased VaR
(i.e. estimated risk) with very little latency, such that they can take remedial steps. However, constantly re-
calculating VaR from first principles for potentially hundreds of thousands of assets is not feasible.

On the other hand, it is possible to substantially reduce the cost of the VaR calculation through incremental
calculation of its constituent components (the mean and standard deviation of the asset return timeseries)
across smaller time windows. This can be achieved using a streaming platform that buffers datapoints into
fixed time windows and triggers processing once each window is full. However, a streaming platform itself
cannot safely store the resultant intermediate outcomes as they are designed to be stateless. Hence, the
intermediate outcome from each window needs to be stored into a database and made accessible such
that VaR can be rapidly calculated for a target time period. The challenge then from the database side is to
provide sufficiently fast writes for the new windows as they are created, while also enabling very low-
latency querying of the stored window data for each asset such that VaR can be re-calculated for tens of
thousands of assets minute-by-minute.

Figure 1 illustrates the structure of this process for FX assets (currency trading) when combining data-in-
flight and data-at-rest. As we can see, a high-volume data stream of currency prices continually arrives at
the left hand side, comprised of <asset, timestamp, value> tuples. This stream is then sub-divided into one
stream per-asset. The streaming platform will then buffer the updates for each currency price into fixed
time windows (in this example a 5 minute window length). Once the buffer period has elapsed, a trigger
starts the calculation of the intermediate components needed for VaR, i.e. the mean and standard
deviation of the updates within the window, that are then stored within a database. Depending on the
desired variants of VaR the user wants, the required window data is loaded from the database and those
variants of VaR are calculated and then emitted for downstream consumption by the user.

Figure 1: Example of the VaR calculation process for FX data streams

Considering the dimensions discussed earlier, this is a windowed process, i.e. it relies on intermediate
calculation over time windows, and the computation is primarily performed within the Streaming Platform.
Meanwhile, calculation outcomes are being written (means and standard deviations), but the raw stream is
not.

This is a proposed solution for a general case application coming from the insurance sector targeting risk
assessment analysis in real-time. However, we designed it in a more generic manner in order to apply the
same patterns to other scenarios coming from both the insurance and finance sector. INFINITECH has 15

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 13 of 36

pilot cases, where many of them require streaming processing technologies, as identified in the user stories
provided by T2.1 Therefore, we will take advantage of those pilots during the evaluation phase to verify if
the proposed framework that we present in this deliverable can be beneficial to them.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 14 of 36

3 State-of-the-Art Analysis on Data Streaming
Technologies and Complex Event Processing

Big data analytics is a key area for businesses and the public sector alike, enabling the analysis of huge
amounts of data to draw business insights and discover new, innovative ideas, technologies and solutions.
By utilizing big data analytics and artificial intelligence, businesses and organizations can support their BI,
adopting new data driven decision-making tools and shifting strategic planning processes.

The data collected by the various systems day by day are rapidly increasing and that makes it difficult to
store them in known relational and non-relational business’ databases but also, to apply data mining tools
and techniques directly on big data streams. Thus, nowadays it seems that streaming data processing, the
technology that started to develop more than 20 years ago, has a greater value than ever. In 1992, the
Tapestry system has introduced the notion of streaming queries, and by then, various technologies of
streaming processing have been developed per generation of streaming systems.

3.1 Data Streaming Technologies and their Generations
Starting with the first generation, the applications that have been developed in the early 00s used
centralized stream processing engines such as Stream [1], Aurora [2] and TelegraphCQ [3]. These engines
provided window-based query operators that execute continuous queries over relational data streams.
While these engines supported principled relational query models, e.g. as proposed through the
Continuous Query Language (CQL) [4], they lacked support for parallel data processing, making them
inapplicable in Big Data scenarios.

With the increase of stream rates and query complexity, a second generation of stream processing engines
became distributed in order to harness the processing power of a cluster of stream processors. Systems
such as Borealis [5], Gigascope [6], and InfoSphere Streams [7] permit inter-operator parallelism for
continuous queries, that is, one query can be executed on multiple machines. Such systems exploit task-
parallelism, i.e. they execute different operators on different machines and allow the execution of many
different continuous queries in parallel. InfoSphere Streams supports intra-query parallelism through a
fine-grained subscription model, which specifies stream connections, but management is manual.

As a result, the third generation of stream processing engines focus on intra-query parallelism, parallelizing
the execution of individual query operations. StreamCloud [8], Apache S4 [9] and Storm [10] express
queries as directed acyclic graphs with parallel operators interconnected by data streams. StreamCloud
parallelizes stateful queries at runtime also providing intra-operator parallelism. It uses a query compiler to
synthesize high-level queries into a graph of relational algebra operators. StreamCloud also provides
elasticity. It uses hash-based parallelization, which is geared towards the semantics of joins and aggregates.
S4 schedules parallel instances of operators but does not manage their parallelism. Storm allows users to
specify a parallelization level and supports stream partitioning based on key intervals, but it cannot scale
out the computation at runtime. This makes it hard to support unknown Big Data analytics tasks when the
computational expensive of operators is not known beforehand. Schneider et al. [11] adds elastic operators
to the SPADE language, which gradually finds the optimal number of threads for stateless processing with
maximum throughput. Spark Streaming [12] parallelizes streaming queries by running them on the Spark
distributed dataflow framework using micro-batching. With micro-batching, the streaming computation is
executed as a series of short-running Spark jobs. Each Spark job outputs incremental results based on the
most recent input data. A limitation of such an execution model is that it makes it challenging to support

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 15 of 36

arbitrary window semantics for continuous queries and in particular sliding windows. The Stratosphere
project [13] has developed a distributed dataflow framework that can execute data-parallel batch and
streaming processing jobs on the same platform. Computation is described as dataflow graphs, which are
optimized using existing database techniques. The results of the Stratosphere project were made available
through the open-source Apache Flink [14] platform now exploited by the German startup Data Artisans
and the only competitor to Apache Spark made by the American startup DataBricks. All the above platforms
assume that stream processing operators are stateless, which simplifies scalability and failure recovery.
However, this means that streaming queries cannot express complex analytic tasks such as data mining and
machine learning algorithms that incrementally refine a model.

To address this problem, the fourth generation of stream processing engines adopt a stateful stream
processing model. Platforms such as Apache Samza [15] and Naiad [16] execute streaming operators in a
data-parallel fashion while allowing operators to have access to mutable in memory state. For example, the
state of a continuous query can be a machine learning model that is trained with new incoming data. These
stateful stream processing platforms therefore support the execution of analytical applications that
maintain historic data while continuously processing new data. Some of these fourth-generation streaming
engines rely on the concept of Stateful Dataflow Graphs (SDGs) [17]. An SDG contains vertices that are
data-parallel stream processing operators with arbitrary amounts of mutable in-memory state, and edges
that represent the stream. SDGs can be executed in a pipelined fashion so to have a low processing latency.
All operators are assigned to machines in the cluster and the parallelization level for each operator is
automatically decided by the system.

Today, some of the top tools often used for real-time data streaming processing are Apache Storm, Apache
Spark, Apache Flink, Amazon Kinesis [18], Apache Samza and IBM InfoSphere Streams. Below is an
extended analysis of these tools.

3.1.1 Apache Storm

Built by Twitter, Apache Storm [10] specifically aims at the transformation of data streams and it is useful
for ETL, online machine learning, continuous computation, and many other things. The foremost capability
of Apache Storm is faster data processing that can carry out processes at the nodes with faster data
processing than other tools do, combined with very low latency. However, Apache Storm is known to have
a few drawbacks such as that it is only suited for data which are ingested as one entity and it cannot
guarantee that the data will be processed only once, and thus may compromise reliability..

3.1.2 Apache Spark

Spark [12] is an general-purpose distributed cluster computing framework. It is known for its in-memory
processing capabilities where its engine conducts analytics, ETL, machine learning, and graph processing on
data in motion or at rest. It is not actually a real-time system, but it processes in the micro-batches at a
defined interval. It offers high-level APIs for different programming languages and when it has some
latency, which eliminates some real-time analytics use cases, it makes sure that the data is processed in a
trustworthy manner.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 16 of 36

3.1.3 Apache Flink

Flink [14] is based on the concept of streams and transformations and is like a hybrid between the Spark
and Storm, providing frameworks for both streaming and batch processing, approaching batches as data
streams with finite boundaries. This allows Flink to be low latent while also exhibiting the data fault
tolerance of Spark. It can also have several user-configurable windowing and redundant settings in order to
support user configuration. In addition, Flink also implements Apache Beam, which is the contribution of
Google to enable real-time processing. Some other benefits that Flink offers are:

 Stream-first approach which offers low latency and high throughput.

 Real entry-by-entry processing.

 Does not require manual optimization and adjustment to data it processes.

 Dynamically analyses and optimizes tasks.

 It is a continuous stream processing operator.

However, Flink has some scaling limitations.

3.1.4 Amazon Kinesis

Amazon Kinesis [18] is a robust managed service that is easy to set up and maintain which allows streaming
Big Data with Amazon Web Services (AWS). In fact, it is a cloud-based service that has the capability to do
real-time data streaming and processing. It helps to analyse the real-time data, scaling according to the
different requirements. One of the most crucial traits of Amazon Kinesis is flexibility that helps enterprises
start initially with basic reports and insights on data. Subsequently, with the growth of demand, Kinesis can
help in the deployment of machine learning algorithms to support in-depth analysis. However, the fact that
it is a commercial cloud service, priced per hour, makes some enterprises to conclude to other free and
open-source solutions.

3.1.5 Apache Samza

Apache Samza [15] is considered one of the best real-time stream processing frameworks. It is designed to
match with the unique architecture of Kafka, another real-time data streaming tool, and it guarantees any
kind of fault tolerance. Apart from just fault tolerance, it can also work against buffering and state storage.
Samza also has great scalability and is distributed on all levels, managing things like snapshotting and
restoration of the stream processor’s rate. Nevertheless, Samza does not offer any reliability and recovery
accuracy.

3.1.6 IBM InfoSphere Streams

InfoSphere [7] Streams is designed to uncover meaningful patterns from information in motion (data flows)
during a window of minutes to hours, as it is a full CEP system, as opposed to the aforementioned tools.
The platform provides business value by supporting low-latency insight and better outcomes for time-
sensitive applications, such as fraud detection or network management. InfoSphere Streams also can fuse
streams, enabling to derive new insights from multiple streams. The main design goals of InfoSphere
Streams are to:

 Respond quickly to events and changing business conditions and requirements.

 Support continuous analysis of data at rates that are orders of magnitude greater than existing
systems.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 17 of 36

 Adapt rapidly to changing data forms and types.

 Manage high availability, heterogeneity, and distribution for the new stream paradigm.

 Provide security and information confidentiality for shared information.

3.1.7 Brief Comparison of Analysed Data Streaming Tools

The following table presents a brief comparison between the tools previously analysed in terms of their
capabilities and how they work. In particular, the comparison fields are the execution model that they
follow, the workload which is if they are CPU or memory intensive, where the latter implies that the main
performance bottleneck at higher load conditions will be due to lack of memory. Also, fault-tolerance,
latency and throughput are some other fields that have been used for the comparison, along with their
application domain or areas.

Table 2: Comparison of Data Streaming Tools

Tool
Execution

Model
Workload Fault tolerance Latency Throughput Application

Apache
Storm

Streaming CPU / memory

intensive

Replication, checkpoint, data
recovery, upstream backup,
record-level acknowledge-
ment, stateless management

Very low Low Internet of things, strea-
ming machine learning,
multimedia analysis

Apache
Spark

Batch,
Iterative,

Streaming

CPU / memory

intensive

RDD based check-pointing,
parallel recovery, replication

Low High Event detection, strea-
ming machine learning,
fog computing, interactive
analysis, multimedia
analysis, cluster analysis,
filtering, re-processing,
cache invalidation

Apache
Flink

Streaming,
Batch,
Iterative,

Interactive

Memory

intensive

Stream replay

and marker-checkpoint

Very low High Optimization of

e-commerce search result,
network / sensor
monitoring and error
detection, ETL for business
intelligence infrastructure,
machine learning

Amazon
Kinesis

Streaming,
Batch
processing

Memory

intensive

Checkpoint Very low High Real-time dashboards /
businesses / operational
decisions, exceptions
capturing, alerts gene-
ration, recommendations
driving

Apache
Samza

Streaming,
Batch
processing

Memory

intensive

Checkpoint Very low High Filtering, re-processing,
cache invalidation

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 18 of 36

IBM
Infosphere
Streams

Streaming

Capture data-
base workloads
and replay
them in a test
database
environment

Automatic recovery Low High Space weather prediction,
physiological data streams
analysis, traffic manage-
ment, real-time
predictions, event
detection, visualization

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 19 of 36

4 INFINITECH Enablers for SQL Operators over
Streaming Data

As it has been in the previous section, modern streaming processing frameworks nowadays provide the
ability to correlate data at-rest with data coming from a streaming channel. They offer a variety of
operators that enables a data analyst to apply processing methods on the stream, using either CEP built-in
functions or high level data frames. In the latter case, streams are transformed into unbound virtual tables
that can be consumed by SQL-alike operators, or other operators. This level of virtualization of the data,
allows for streams to be expressed as tables, and thus, being correlated with static data that are also
expressed in tabular format. The sources of the static data can vary from static files, to database
management systems and other sources of persistent storage. All those have to implement a specific
connector in order for the streaming processing framework to be able to retrieve and store data to the
target source.

Although the ability for correlating static data with streaming process is not novel, there are various
barriers that prevent those frameworks to deliver real-time BI. Those limitations are usually introduced by
the persistent storage elements, which are either unable to handle data ingestion in very high rates, or they
can insufficiently execute data retrieval operations, due to the high latency that a scan operation requires.
Regarding the latter case, a typical scenario can be to compare a streaming tuple with an aggregated value:
For instance, the value of a finance transaction might need to be checked against the overall average of
finance transactions that have taken place during the last defined period of time. However, this operation
requires firstly a scan of a data partition, which typically is costly. In order to overcome this, usually there
are two approaches: The first one is to cache this value, with the drawback that the average value is not
consistent, which is not acceptable in use cases coming from the finance sectors. The second approach is to
create a virtual table with the target dataset and apply the aggregation in memory. This has two benefits: It
is much more effective, as all calculations take place in memory, which is less time consuming, and,
continuous updates and data modifications can be applied to the common shared dataset. However,
restrictions on the overall size of the memory of the dataset and insurance of the transaction semantics are
a significant drawback.

Regarding operational workloads, modified data arriving in high rates must be stored in a persistent
volume. Traditional database management systems usually are incapable to handle these loads, due to the
enforcement of transactions. As the rates goes high, the transactional management subsystem of the
database needs to scale out, in order to serve these loads. However, the distribution of transactions is hard
to be achieved, as the traditional implementations make use of the two-phase-locking protocol, which
cannot be distributed by design. To make things worse, operational workloads cannot be combined with
analytical processing, as the one blocks the other. To overcome this problem, data ingestion is targeting
operational datastores, while ETLs are used to periodically move data to a data warehouse. By doing this, it
is possible for a streaming processing framework to ingest data to one datastore element and use the data
warehouse for analytical operations. As data in the warehouse are added periodically by the execution of
the ETL, the data can be considered as non-modified, can be cached in memory of the streaming engine.
This leads to have a near real-time BI, as the processing takes into account a snapshot of the dataset that
has been retrieved in the last invocation of the ETL. This is often not enough in modern cases coming from
the finance sector, where real-time identification of potential opportunities or mal-detections is the
requirement.

As it can be concluded, it is hard for a data analyst to make use of a streaming processing framework in
order to correlate static and streaming data for real-time analytics. Towards this direction, the INFINITECH
platform provides enablers that can be used in order to overcome those obstacles. As a result, instead of

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 20 of 36

using virtual or materialized views over a dataset that allows the execution of table functions and SQL
queries over correlated streaming data and data at-rest, while at the same time apply possible data
modifications on the view, the whole architecture can be much more simplified: we can have the direct use
of a data table of the data management layer. The latter can allow for the streaming framework to delegate
the requirements for data consistency to the database. The data management layer offers specific enablers
that aim to overcome the obstacles introduced by the need for persistent storage.

4.1 Hybrid Transactional and Analytical Processing
Hybrid Transactional and Analytical Processing is a first-class citizen in the overall data management layer
of INFINITECH. As it has been reported in the corresponding deliverables of task T3.1, the purpose of this
enabler is twofold: Firstly, it allows for the combined execution of operational and analytical workloads,
which is crucial when there is the need for real-time business intelligence. This removes the necessity for
moving data from the transactional datastore to a data warehouse. It is based on the removal of all data
locks that are needed by traditional implementations to enforce data consistency on transactions that are
being executed in parallel. The lack of data locks allows for an analytical operation to perform a scan over
the whole dataset (which is typically the case when we need to calculate an aggregated value) without
being blocked by data modification operations that put the locks. That way, the data analyst or application
developer does not have to create and maintain in memory specific virtual or materialized views, which are
used by the streaming frameworks to share this information across streaming sessions, and delegates this
responsibility to the lower layer that has been designed to serve this. In addition, the need to maintain the
state across sessions and share it across the different deployment nodes is removed, along with the
restriction for the size of the view due to memory limitations of the deployment.

Complementary to the above is the ability of the INFINITECH data management layer to handle very high
rates of data ingestion. Due to its highly scalable transactional management system, it can be scaled out
linearly to hundreds of nodes. As a result, it can serve hundreds of thousands of transactions per second,
without being a bottleneck. This innovation of the platform allows the ingestion of data to be handled on
the runtime, avoiding the need to push the incoming data for a temporal persistent and fault-tolerant
queue (e.g. Apache Kafka). The approach that involves a data queue demands a consumer process that
periodically gets data from the queue and puts them to the persistent storage in a batch. As a result, data
are being ingested periodically in mirco-batches, and this design downgrades the real-time processing to
near real-time.

4.2 Online Aggregations
Another obstacle that appears when correlating streaming data with data at-rest is the need to combine
the value of a tuple coming from the streaming channel with an aggregated value of the data already
stored. Requesting the min/max/average value of a dataset to be used in a later comparison firstly requires
the scan of the data table in order to retrieve the aggregated value. Having the dataset in a persistent
storage will require lots of I/O operations to that volume, which is time consuming with a significant
latency. To overcome this problem, data are being cached into memory where this value has been pre-
calculated in advance. The drawback of this technique is in the case of datasets that are being modified
frequently; we lose the data consistency, as the aggregated value will be outdated. Materialized views are
usually used to deal with this requirement; however, each aggregated operation has to be calculated again
each time the dataset is being modified. Even if this calculation takes place in memory, introducing serious
barriers regarding the overall size of the dataset, it is computational intense. INFINITECH provides the
ability to execute online aggregations, which means the value can be retrieved online at runtime. In

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 21 of 36

contrast with the need for a scan operation and the calculation of the aggregated value by calculating all
involved records, INIFINITECH’s data management layer maintains an additional record for each involved
value. The calculation is being performed on the fly, as a new record arrives. Instead of having to check the
value of each record of the scan, the platform relies on delta operators that have been implemented in the
scope of task T5.3. As a result, the value has been pre-calculated and the complexity for data retrieval is
only O(1), which is the minimum we can get. Furthermore, being already integrated with the transactional
management component of the platform, it is ensured that the value is consistent in terms of transactional
semantics. This will remove the necessity for the streaming processing framework to maintain such
expensive in terms of resource usage and time consuming views, and downgrades this to the lower layer.
More details regarding the implementations of the online aggregators can be found in the corresponding
deliverables of T5.3.

4.3 Polyglot Capabilities
We can consider a third obstacle, the necessity to correlate static data coming from different data sources.
Most of the streaming processing frameworks implement a variety of join operators that can be used to get
data from various sources and correlate the results between them and among streaming channels.
However, a join operator usually requires to get into memory a significant amount of data that needs to be
used for the outer operator of the operation itself. INFINITECH’s polyglot component can be used instead,
so that the data analyst and application developer can write a simple select-from statement to get the
corresponding result set. By doing this, she pushes down to the data management layer of INFINITECH the
execution of this join, removing the need from the streaming processing to maintain all data in memory. As
explained in the corresponding deliverables of T3.2, the polyglot component can receive a query written in
a common language and execute this in the various target datastores. As a result, the retrieval of the static
data becomes more transparent, as this is being delegated to another component, letting the streaming
engine to only correlate the streaming data with the result.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 22 of 36

5 INFINITECH streaming engine overview and design
of operators

After performing an intensive state-of-the-art analysis of existing solutions regarding frameworks for
streaming processing, which can be found in Section 3, we decided to use the Apache Flink as the basis for
the INFINITECH unified query processing framework, as the latter offers a variety of characteristics and
functionalities that can be useful for the platform. It provides two different APIs for correlating streaming
data with data at-rest which transforms streams and external persistent data into tabular formats that can
be used by the various data operators. The provided Table API and SQL API can be used for static data and
can be used in conjunction with the DataStream and DataSet interfaces.

Apache Flink provides two manners for processing: a language-integrated query API and the ability to direct
execute SQL statements. The former provides a set of available methods that can be invoked and can
compose a pipeline of relational operations in an intuitive way and returns an equivalent result compared
to a normal SQL execution. It supports common SQL operators such as selections, projections, filters,
aggregations etc. The latter manner requires the compilation of the SQL statement to an execution plan
that will be applied. The compilation makes use of Apache Calcite [21] .

There is one significant difference however between those two ways for accessing static data: Using SQL
operators, the whole dataset needs to be available to the streaming engine, where the latter applies the
query plan in memory and returning back the results. The only exception is for SQL-compatible data
management systems, where the whole query can be pushed down to the source via a Java DataBase
Connection (JDBC) connection. In fact, in that cases, it is the database itself that takes care about the
execution of the statement and returns back the result set, which will be further transformed to a tabular
format, thus initializing a Table instance of the corresponding API. In all other cases, the dataset has to be
fetched first from the source, and the execution plan needs to be handled by Flink in memory. An
alternative approach is the implementation of specific connectors that can be used by the streaming engine
using the language-integrated query API. As mentioned before, the query API provides various relational
operations such as selections, projects etc, and the connector implements those operators for data access.
As a result, the dataset does not have to be loaded in memory. Instead, those operations are being
executed in the target datastore which filters out records and returns the results.

INFINITECH data management layer is SQL-compatible and implements the JDBC specification. However,
this requires the invocation of the query engine that introduces an inherit overhead due to its footprint.
Due to this, we plan to provide an INFINITECH Flink connector, which will implement all operations
supported by Flink for unified stream and batch processing. The benefit is twofold: firstly, it will allow for
direct access to the storage engine of the platform, bypassing the footprint introduced by the query engine,
and as a result, can support data ingestion in even higher rates. What is more, the direct API of the data
storage of INFINITECH has been designed to support the distributed execution of aggregated operations. As
a result, these types of operations can be pushed down to the storage for efficient data retrieval. The
following sections provide information about the initial design of integration of the streaming engine of
Flink with the INFINITECH data management layer via those operators.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 23 of 36

5.1 Basic Concepts
The Table API has as its central concept the Table which serves as the input and output of operations: an
operator that performs a project will take as input an instance of a Table and will return the projected
result in another instance of a Table. Tables can be either permanent or temporary. The former allows to
be visible across several sessions that might be span across different nodes, while the latter is only visible
during the lifecycle of a single session.

In order to create a table, there are two different ways: one is to use the native API that allows you to use
the language-integrated query, which composes the operators by using native language, or by using an SQL
statement and pass the query string to the framework. The following code snippet shows how to construct
a table with the native API.

// create a Table

tableEnv.connect(...).createTemporaryTable("Orders");

// scan registered Orders table

Table orders = tableEnv.from("Orders");

// compute revenue for all customers from France

Table revenue = orders

 .filter($("cCountry").isEqual("FRANCE"))

 .groupBy($("cID"), $("cName")

 .select($("cID"), $("cName"), $("revenue").sum().as("revSum"));

While this code snippet produces an equivalent result, using an SQL statement:

// create a Table

tableEnv.connect(...).createTemporaryTable("Orders");

// scan registered Orders table

Table orders = tableEnv.from("Orders");

// compute revenue for all customers from France

Table revenue = tableEnv.sqlQuery(

 "SELECT cID, cName, SUM(revenue) AS revSum " +

 "FROM Orders " +

 "WHERE cCountry = 'FRANCE' " +

 "GROUP BY cID, cName"

);

The difference between these two code snippets is the way they retrieve data from the underlying
datastore. In the second example, there is an SQL string that will get all orders from the country whose
name is FRANCE, and will return the overall revenue of all customers living in that country. To do so, it will
need to use the FROM clause in order to do a selection over the ORDERS datatable, then apply a filter
condition via the WHERE clause and the GROUP BY clause to group the summary of the values over those
columns. Finally, it will project the two columns in the GROUP BY and will apply the aggregation operator
over the revenue column. This query can be pushed down via the JDBC in cases Flink is integrated with an
SQL compatible data source. Otherwise, it will grab all data from the table ORDERS first, and then it will
apply this query over the dataset that has been fetched in memory.

In the other code snippet however, the same query is expressed via the native API. We can see the involved
operators are being constructed step-by-step. Given that, a filter will be applied on the specific column over

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 24 of 36

the table that have been defined, which will get data from the table ORDERS. Then, the group by method
will be invoked whose result will be projected by the select method, which also applies the aggregation
operation.

Apart from reading data, the API provides the ability to manipulate and persist data to a persistent storage.
The following code snippet provides an example.

// create an output Table

final Schema schema = new Schema()

 .field("a", DataTypes.INT())

 .field("b", DataTypes.STRING())

 .field("c", DataTypes.BIGINT());

tableEnv.connect(new FileSystem().path("/path/to/file"))

 .withFormat(new Csv().fieldDelimiter('|').deriveSchema())

 .withSchema(schema)

 .createTemporaryTable("CsvSinkTable");

// do something and get the result

Table result = ...

// emit the result Table to the registered TableSink

result.executeInsert("CsvSinkTable")

This code creates a temporary table called CsvSinkTable that is mapped to a csv file in the storage and has
the schema that has been defined at the first lines of the code. After doing a process, the data analyst
retrieves the data and puts them into an instance of the Table, and then invokes the executeInsert method
to actually store data into the csv file.

5.2 Stream Correlation with Data At-Rest
Apache Flink provides two APIs that allows the manipulation of streaming data, which are the DataStream
and DataSet APIs. Table API and SQL queries can be easily integrated with and embedded into DataStream
and DataSet programs. As a result, the data analyst can write a query to retrieve data from an external data
table that is stored in a relational database management system and do a pre-processing: apply some
filters, aggregate data that are grouped by a number of columns and project specific columns to the
temporary table. The data stored in the table can be further processed with either the two of the
DataStream or DataSet APIs. The same can happen vice versa: it is possible for a DataStream or DataSet
program to be used as an operand in an operator that is part of the Table API.

Being able to transform those two APIs gives the ability for the streaming engine to correlate data of those
two different types: streaming data with data at-rest. As data stored in the table can be further processed
by the streaming APIs, it allows data coming from a stream to make use of static information that can be
retrieved by query statements over a persistent data source. Having said that, we can retrieve the average
value of the finance transactions of a user during the past week, by executing an analytical query to the
target database, and retrieve this result via a Table. This value can be later on used by the streaming APIs to
check if the value of a current finance transaction is bigger than the amount of money that this costumer is
usually performing, that might trigger an alert.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 25 of 36

In the same sense, an operator of the Table interface might be able to insert data to a persistent storage.
The ability of the Table to consume data of the streaming APIs allows for the direct ingestion of data
streams into the storage layer. As it has been already mentioned, the insert operation usually puts data into
a data queue, and a consumer process periodically sends micro batches to the target datastore. In
INFINITECH, we have designed our insert operator to directly ingest data to the storage engine of the
platform, taken advantage of its ultra-scalable transactional manager that allows to server operational
workloads in very high rates.

Moreover, in order to correlate stream and batch data, it is not enough to simple be able to transform the
different types of APIs to another, but also providing a framework and operators that can be applicable to
both types of data. Their main differences are that batch data are bound, while streaming is usually
unbound, batch data pre-exist while streaming data continuously fills the query and batch data produces
static results, while streaming data continuously change the result as the stream goes through the
operator. In order to overcome those differences, there has been introduced the concept of virtual views.
All input of the operators implements such a virtual view so that the execution of the operator can be
transparent from the implementation of the view. More precisely, in order to deal with streaming data,
there has been proposed the Materialized view or Dynamic Table. The latter caches the result of the query
such that the query does not need to be evaluated each time the view is being accessed. However, the data
in the view can be outdated when a data modification operator arrives into the stream. In order to
overcome this, different techniques can be applied that updates the materialized view, by listening to
changes by data modification operators of the stream. Dynamic tables are changing over time in contrast to
the static tables that represent batch data. Due to this, queries targeting streaming data are often called
Continuous Queries, which never terminate and produce those dynamic tables as the result. This means
that those queries continuously update their result in order to reflect the changes on its dynamic input
tables.

Taking into account that the maintenance of the updates coming from the stream in the dynamic table
must be done in memory, this concept comes with several restrictions, mainly regarding computational and
memory usage. Continuous queries are evaluated on unbounded streams and are often supposed to run
for weeks or months. As a result, the total amount of data that a continuous query processes can be very
large. Similarly, other queries require re-computing and updating a large fraction of the emitted result rows
even if only a single input record is added or updated.

Dynamic tables are the core concept of Flink’s Table API and SQL support for streaming data. In contrast to
the static tables that represent batch data, dynamic tables are changing over time. They can be queried like
static batch tables. Querying dynamic tables yields a Continuous Query. A continuous query never
terminates and produces a dynamic table as result. The query continuously updates its (dynamic) result
table to reflect the changes on its (dynamic) input tables. Essentially, a continuous query on a dynamic
table is very similar to a query that defines a materialized view.

5.3 INFINITECH Operators for the Streaming Engine
As it has been described in the previous subsections, the Apache Flink will be used as the basis for the
Unified Query Processing Framework of INFINITECH that will allow the correlation of streaming data with

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 26 of 36

at-rest. Even if natively this framework provides the tools and APIs to mix streaming with batch processing,
they come with certain limitations so that the overall solution cannot be used for real-time business
intelligence. To overcome these limitations, we decided to move all materialized views to be handled by the
data management layer. This will imply that all data modification operators coming from the stream will be
targeting the central data repository of the platform. Data stored in its data tables can be shared across
different Flink sessions, so there is no need for the latter to create and bind temporary tables to sessions.
Our design relies on the technological enablers of INFINITECH, as briefly described in Section 0, while more
analytical details can be found at the relevant deliverables of the corresponding tasks of the project. In
order to support data ingestion in very high rates, it was considered that accessing the storage engine of
the platform will increase the overall throughput, as the latency will become lesser, due to the fact that a
modification operation will avoid the performance overhead introduced by the footprint of the query
engine. For this reason, an INFINITECH connector with Flink has to be provided that implements a group of
specific operators. The delivery of those operators is the main objective of Task 3.3, and an initial list, along
with some implementation details can be found in this subsection.

Create/Alter Table Schema

 AddColumns: Performs a field add operation. It will throw an exception if the added fields already
exist.

 AddOrReplaceColumns: Performs a field add operation. Existing fields will be replaced if add
columns name is the same as the existing column name. Moreover, if the added fields have
duplicate field name, then the last one is used.

 DropColumns: Performs a field drop operation. The field expressions should be field reference
expressions, and only existing fields can be dropped.

 RenameColumns: Performs a field rename operation. The field expressions should be alias
expressions, and only the existing fields can be renamed.

A code snippet on how to invoke these methods from Flink can be found as follows:

Table orders = tableEnv.from("Orders");

//AddColumns

result = orders.addColumns(concat($("c"), "sunny"));

//AddOrReplaceColumns

result = orders.addOrReplaceColumns(concat($("c"), "sunny").as("desc"));

//DropColumns

result = orders.dropColumns($("b"), $("c"));

//RenameColumns

result = orders.renameColumns($("b").as("b2"), $("c").as("c2"));

This will require the connector to drop the table and to recreate with the corresponding schema, as defined
in the Flink client. The following code snippet demonstrates how this is implemented in the connector,
according to the type of mode to append.

Settings settings = relationSettings.buildSessionSettings();

try(Session session= SessionFactory.newSession(relationSettings.getUrl(),settings)) {

 String table = relationSettings.getTable();

 boolean exists = session.database().tableExists(table);

 if(exists) {

 switch (mode) {

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 27 of 36

 case ErrorIfExists:

 throw new IllegalArgumentException(String.format("Table %s already exists", table));

 case Overwrite:

 session.database().dropTable(table);

 createTable(session,table,keyFields,data.schema());

 break;

 case Ignore:

 return;

 }

 }

 else{

 createTable(session,table,keyFields, data.schema());

 }

 }

catch (RuntimeException e){

 throw e;

}

catch (Exception e){

 throw new LeanxcaleRuntimeException(e);

}

Scan, Projection, and Filter

 From: Similar to the FROM clause in a SQL query. Performs a scan of a registered table.

 Values: Similar to the VALUES clause in a SQL query. Produces an inline table out of the provided
rows.

 Select: Similar to a SQL SELECT statement. Performs a projection operation.

 As: Renames fields.

 Where / Filter: Similar to a SQL WHERE clause. Filters out rows that do not pass the filter predicate.

A code snippet on how to invoke these methods from Flink can be found as follows:

Table orders = tableEnv.from("Orders");

Table result = orders.select($("a"), $("c").as("d"))

 .as("x, y, z, t")

 .where($("b").isEqual("red"));

This will require the connector to implement all corresponding filter methods that can be found in Flink. To
handle these cases more effectively, a FilterTransator interface have been defined in the connector, which
defined a filter method, that each of the operations implements accordingly. The FilterTransator can be
found in the following code snippet:

public interface FilterTranslator<T extends org.apache.flink.sql.sources.Filter>{

 Filter translate(T filter, TableModel tableModel);

}

An implementation of this method for the isEqual filter method of the example can be found in this code
snippet:

@Override

public Filter translate(EqualTo filter, TableModel tableModel){

 String field = filter.attribute();

 Type type = tableModel.getFieldType(field);

 switch (type){

 case SHORT:

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 28 of 36

 case INT:

 case LONG: return Filters.eq(field,((Number)value).intValue());

 case FLOAT:

 case DOUBLE: return Filters.eq(field,((Number)value).doubleValue());

 case TIMESTAMP: return Filters.eq(Expressions.field(field), Constants.timestamp((Date)value));

 case DATE: return Filters.eq(Expressions.field(field), Constants.date((java.sql.Date)value));

 case TIME: return Filters.eq(Expressions.field(field), Constants.time((Time)value));

 case STRING: return Filters.eq(field, (String)value);

 case BOOLEAN: return Filters.eq(Expressions.field(field), Constants.bool((Boolean)value));

 default: throw new IllegalArgumentException(String.format("Type not %s supported", type));

 }

}

Aggregations

 GroupBy Aggregation: Similar to a SQL GROUP BY clause. Groups the rows on the grouping keys
with a following running aggregation operator to aggregate rows group-wise

The following code snippet shows how to invoke this method via Flink

Table orders = tableEnv.from("Orders");

Table result = orders.groupBy($("a"))

 .select($("a"), "b")

 .sum()

 .as("d"));

Distinct

 Distinct: Similar to a SQL DISTINCT clause. Returns records with distinct value combinations.

The following code snippet shows how to invoke this method via Flink

Table orders = tableEnv.from("Orders");

Table result = orders.distinct();

Joins

Apache Flink supports various types of join operations, such as inner, outer or interval joins. This operator
cannot be pushed down directly to the data storage of the INFINITECH platform, as its API does not support
joins between tables. As a result, the user needs to use the JDBC driver to retrieve data from the data
management player, and write a standard SQL statement, which will be executed by the query engine of
the platform.

Order By

 Order By: Similar to a SQL ORDER BY clause. Returns records globally sorted across all parallel
partitions.

 Offset & Fetch: Similar to the SQL OFFSET and FETCH clauses. Offset and Fetch limit the number of
records returned from a sorted result. Offset and Fetch are technically part of the Order By
operator and thus must be preceded by it.

A code snippet on how to invoke these methods from Flink can be found as follows:

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 29 of 36

Table in = tableEnv.fromDataSet(ds, "a, b, c");

in.orderBy($("a").asc())

 .offset(10)

 .fetch(5);

Insertions

 Insert Into: Similar to the `INSERT INTO` clause in a SQL query, the method performs an insertion
into a registered output table. The `executeInsert()` method will immediately submit a Flink job
which execute the insert operation.

A code snippet on how to invoke this method from Flink can be found as follows:

Table orders = tableEnv.from("Orders");

orders.executeInsert("OutOrders");

The outOrders table contains a list of rows that will be inserted into the datastore, via the connector. The
implementation of this operator will execute the following code in order to insert the tuples to the data
storage:

Settings settings = relationSettings.buildSessionSettings();

try(Session session = SessionFactory.newSession(relationSettings.getUrl(),settings)){

 int totalCount = 0;

 try {

 Table table = session.database().getTable(relationSettings.getTable());

 int commitCount = 0;

 while (iterator.hasNext()) {

 Tuple tuple = table.createTuple();

 Row row = iterator.next();

 for (int i = 0; i < fieldsByPos.length; i++) {

 tuple.put(fieldsByPos[i], row.apply(i));

 }

 table.insert(tuple);

 totalCount++;

 if(++commitCount>=commitRows){

 session.commit();

 commitCount = 0;

 }

 }

 if(commitCount>0) {

 session.commit();

 }

 }

 catch (Exception e){

 log.warn("Exception writing row {}, rollbacking transaction",totalCount);

 try{

 session.rollback();

 }

 catch (Exception e1){

 log.error("Exception doing rollback {}",e1.getMessage(), e1);

 }

 throw e;

 }

}

catch (RuntimeException e){

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 30 of 36

 throw e;

}

catch (Exception e){

 throw new LeanxcaleRuntimeException(e);

}

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 31 of 36

6 Combined Data Streaming and Data at Rest
Illustration

Having discussed how the INFINITECH solution handles efficient combination of data in-flight and data at
rest in the previous section, it is valuable to provide an illustration of how this would add value with respect
to a specific INFINITECH Pilot. Hence, in this section we provide a walk-through of an updated Flink
topology for the real-time risk assessment in investment banking (Pilot#2) use-case (also discussed
previously in Section 2.2). Recall that the aim of this use-case is to produce as close to real-time risk
assessments for customer investment portfolios as possible, e.g. such that customers can be alerted if
significantly elevated risks start to be observed. Risk is quantified with the metric Value-at-Risk (VaR), which
is calculated by analysing the asset returns over many time periods and calculating an average % loss across
the worst 5% performing time periods (as a worst-case scenario).

To understand the issues with calculating real-time VaR, we first provide an illustration of a naive solution
in Figure 2. In this setup, we take as input on the left-hand side a stream of asset pricing data (e.g. from a
stock market or trading platform). To calculate VaR for an asset at the current moment, we need to retrieve
the historical pricing data for that asset, which will involve an expensive table scan over whatever back-end
database is being used to persistently store asset prices. Once this is done, the resultant array of asset
prices will need to be transferred over the network from the database with the asset pricing data to the
current Flink Worker responsible for processing the new asset price event (that again may be expensive).
The historical prices will then be merged into the stream with the new price event and sent on to an
aggregator to calculate asset returns for each time window being considered. If we are unlucky here, this
may involve another expensive network transfer, depending on if the transformer and window aggregator
are co-located on the same machine. Once the asset returns for each window are calculated, the results
are sent onward to VaR calculation, which produces a single score for the asset based on the updated data.
It is worth noting at this stage that all of this work will have been for naught if the initiating asset price
point does not contribute to a window in the worst 5% (as the VaR calculation only cares about that 5%).
Finally, assuming that the VaR value for the asset has changed, then the new value will be sent to another
transformer, to calculate aggregate VaR for each customer’s portfolio that holds the asset.

Figure 2: Naive VaR Flink Topology

To summarize, there are four principles that should be followed when designing a good solution to this
problem, which the above design fails under:

1. We want to minimise the amount of processing that occurs when each asset price update arrives,
since this happens very frequently.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 32 of 36

2. We should only trigger the re-calculation of VaR if we have good reason to believe that this will
result in the VaR score for an asset to change. Practically, this means we should only trigger
calculation at the end of a time window, and only if the current window is part of the worst 5%.

3. We should avoid expensive table scans over large tables.
4. We should avoid transferring large amounts of data over the network.

Given these principles, let us now consider a superior topology that utilises the INFINITECH streaming
engine to solve these issues. Figure 3 illustrates an alternative Flink topology solution that integrates
dynamic tables and continuous queries over the INFINITECH data layer (the INFINISTORE). As with the
previous topology, we ingest a stream of asset pricing updates over time as a stream. However, instead of
using this as a trigger to start the process of recalculating VaR, we instead assign time window labels that
we can use to structure processing up-front. With these labels in place, we can then leverage the new
remote dynamic table functionality provided by the INFINISTORE to ‘push-down’ both the storage of the
asset pricing data and the incremental calculation of asset returns at the end of each time window into the
store itself. In this way, we never need to transfer a large batch of asset pricing data across the network.
Moreover, the INFINISTORE in conjunction with Flink’s continuous query semantics means that processing
is incremental and localized to only the window of current interest, avoiding large table scans and
redundant computation. Finally, dynamic tables can also be easily pipelined back into stream processing
within Flink, where the ‘events’ emitted are the updates made to the table. In this case, an update to the
Dynamic Returns Per Time Window Table indicates that the return for an asset has been calculated for a
new time window, which acts as a more useful trigger for re-calculation of VaR for that asset. Overall, this is
a much more efficient and scalable topology that can handle high volume streams of asset prices, as well as
parallelism in computation across assets.

Figure 3: VaR Calculation Topology using the Infinitech Streaming Engine

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 33 of 36

7 Conclusions and next steps
This report documented the wok that has been carried out in the scope of task T3.3 “Integrated Querying
of Streaming Data and Data at Rest” at this phase of the project. The main objective of this task is to
implement a data framework that can provide a unified manner for accessing data that can be considered
both streaming and data-at-rest at the same time, thus allowing the correlation of stream and batch
processing in an effective way. This is very important as it will remove the current obstacles and limitations
of existing solutions that promise to deliver this functionality, however they fail due to the inherit barriers
for accessing static data effectively so that they can be used in real-time for streaming processing. As we
explained, the high rate of data ingestion that comes from a stream cannot be served by traditional data
management systems, and as a result, most of the system integrators are using data queues as an interim
layer for pushing data from a stream, while a consumer process periodically takes data from the queue and
ingest them to the datastore in what is called micro batches. This has the drawback that data analysts
cannot apply their AI algorithms in real-data and in fact, they can only provide near real-time business
intelligence. Another drawback is the need to combine streaming data with information that has been
retrieved from aggregation operations over the static data, which are time consuming. Modern solutions
usually cache this information so that it can be instantly available to the stream processing engine, with the
drawback of losing data consistency, when the dataset is being frequently modified at the same time.

This report firstly provided an analysis over the state-of-the-art of streaming processing frameworks, and
analyzed the current status of this ecosystem. We decided to use Apache Flink as the core of the
INFINITECH unified query processing framework, as it is a popular solution with lots of documentation that
also provides some very important functionalities: it has been initially designed without the support of
stateful operations and fault-tolerance, so that it can be easily scaled out. At its current version, it provides
the support of additional operators that are stateful, and defines several levels of APIs for context event
processing on the very low level, for streaming processing using DataStreams and the ability to write SQL
statements for query processing on its higher level Table API. Tables can be transformed to data streams
and vice versa, thus allowing for the correlation of streaming and data processing. However, the
implementation of the stateful operations requires that objects resign in memory and being updated by the
Apache Flink framework, with all the aforementioned barriers.

As the scope of this task is to provide the integrated query processing framework of the INFINITECH
platform, it became obvious that our framework will have to rely on the unique characteristics of the data
management layer of the platform itself: the support of hybrid transactional and analytical processing, the
online aggregations and the polyglot capabilities. The highly scalable transactional management of the data
repository allows for data ingestion in very high rates, which is what a streaming channel requires. We can
remove now the interim data queue and insert data directly to the storage. But this is not the only benefit
from using our own data storage layer. HTAP allows for performing analytical query processing on live data,
as they are being modifying by operational workloads, and as a result, gives the ability for executing AI
algorithms on real data. Real time BI can be now achieved by delegating the need for maintaining Flink’s
materialized views down to the data table of the datastore. This ensures data consistency, as the
transactional semantics are provided by the database itself, rather than relying on the streaming
framework which simply maintains the sequence of the modified operations, but does not guarantees the
serializability of the order of execution (in terms of a database transaction). Moreover, it allows for the
streaming engine to effectively scale out, which cannot be done when sharing content such as materialized
views between different Flink sessions. Additionally, the online aggregations of INFINITECH allow to execute
aggregation statements (i.e. average, summary, count, etc.) with a complexity of O(1) instead of O(n), as
supposed by the need for scanning the entire dataset. Therefore, the streaming operators can directly
query the datastore for such information, instead of caching those values and lose the consistency of the
data.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 34 of 36

In order to integrate the components of INFINITECH that provide those characteristics with Apache Flink,
we designed an INFINITECH Flink connector that implements those operations that can be used by the
framework. We mainly achieve to remove the state of the stateful Flink operations down to the data
management layer, so that those operations can be now considered stateless and can easily scale out. Flink
now does not have to maintain any state and can be scale out independently, while the data management
layer has been also designed to scale horizontally, as explained in the deliverables of task T3.1. Therefore,
we claim that we have no data bottleneck in our solution. Section 5 provides specific information and hints
regarding the implementation of those operators, even if there are in the design phase at this phase of the
project. Finally, as the definition of the pilot needs and requirements for their integrated solutions have
been matured during this phase of the project, we took the generic use case described in the first version
of this document, and made it more concrete, trying to address the needs for a specific pilot, pilot#2, of the
INFINITECH project. We illustrated how our solution can remove 4 important technological obstacles that
this pilot would have normally faced.

To conclude, the progress of the task T3.3 is in plan with the timeline and at this phase of the project, we
have designed the INFINITECH unified query processing framework. The latter will benefit by the other
components of the platform that can be considered as the main technological pillars and therefore, the
implementation of the operators had been initially planned to be delivered at a later phase, when those
components will be available. As we had already been experimenting with the use of Apache Flink over a
generic use case scenario, during this second phase, we took advantage of the needs of pilot#2 in order to
design an integrated solution that could benefit from the outcomes of the work that is being currently
carried out under the scope of task T3.3. As the implementation of the Flink operators are currently in
progress, at the final version of this deliverable will include the validation of our implementation that be
based on this integrated solution of pilot#2.

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 35 of 36

8 References

[1] Arasu A. et al. (2016) STREAM: The Stanford Data Stream Management System. In: Garofalakis M.,
Gehrke J., Rastogi R. (eds) Data Stream Management. Data-Centric Systems and Applications. Springer,
Berlin, Heidelberg

[2] Çetintemel U. et al. (2016) The Aurora and Borealis Stream Processing Engines. In: Garofalakis M.,
Gehrke J., Rastogi R. (eds) Data Stream Management. Data-Centric Systems and Applications. Springer,
Berlin,

[3] F. Khan, N. Akhtar and M. A. Qadeer, "RFID Enhancement in Road Traffic Analysis by Augmenting
Reciever with TelegraphCQ," 2009 Second International Workshop on Knowledge Discovery and Data
Mining, Moscow, 2009, pp. 331-334.

[4] Park, Hoyong, Eric Hsiao, and Andy Piper. "Continuous query language (CQL) debugger in complex event
processing (CEP)." U.S. Patent No. 9,329,975. 3 May 2016.

[5] D. J. Abadi et al., “The Design of the Borealis Stream Processing Engine,” p. 13.

[6] Cranor C.D., Johnson T., Spatscheck O. (2016) Stream Processing Techniques for Network Management.
In: Garofalakis M., Gehrke J., Rastogi R. (eds) Data Stream Management. Data-Centric Systems and
Applications. Springer, Berlin, Heidelberg C.

[7] M. Hirzel et al., "IBM Streams Processing Language: Analyzing Big Data in motion," in IBM Journal of
Research and Development, vol. 57, no. 3/4, pp. 7:1-7:11, May-July 2013.

[8] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez, C. Soriente and P. Valduriez, "StreamCloud: An Elastic
and Scalable Data Streaming System," in IEEE Transactions on Parallel and Distributed Systems, vol. 23, no.
12, pp. 2351-2365, Dec. 2012.

[9] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed Stream Computing Platform,” in 2010
IEEE International Conference on Data Mining Workshops, 2010, pp. 170–177.

[10] “Apache Storm.”, http://storm.apache.org/.

[11] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K. L. Wu, “Elastic scaling of data parallel operators in
stream processing,” in 2009 IEEE International Symposium on Parallel Distributed Processing, 2009, pp. 1–
12.

[12] “Spark Streaming | Apache Spark.”, https://spark.apache.org/streaming/.

[13] “Stratosphere » Next Generation Big Data Analytics Platform.” http://stratosphere.eu/

[14] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache FlinkTM: Stream
and Batch Processing in a Single Engine,” p. 12.

[15] “Samza.”, http://samza.apache.org/.

[16] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad: A Timely Dataflow
System,” in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, New York,
NY, USA, 2013, pp. 439–455.

[17] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch, “Making State Explicit for
Imperative Big Data Processing,” presented at the USENIX ATC’14: 2014 USENIX Annual Technical
Conference, Philadelphia, USA, 2014.

[18] “Amazon Kinesis.”, https://aws.amazon.com/kinesis/.

[19] “WSO2 CEP.”, https://wso2.com/products/complex-event-processor/.

[20] “FlinkCEP.”, https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/libs/cep.html.

https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/libs/cep.html

D3.7 – Data Streaming and Data at Rest Queries Integration - II

H2020 – Project No. 856632 © INFINITECH Consortium Page 36 of 36

[21] “Apache Calcite”, https://calcite.apache.org/

